
Document version: 1.0 Submission date:

(FP7 614100)

D2.2.2 SDP Final Architecture Report

Date: 07 January 2016 – Version 1.0

Published by the Impress Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme
Objective ICT-2013.10.2 EU-Brazil research and development Cooperation

Target Outcome: b) Sustainable technologies for a Smarter Society

http://www.cnpq.br/index.htm

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 2 of 30 Submission date:

Document control page

Document file: d2.2.2_sdp_final_architecture_report_v1.doc

Document version: 1.0

Document owner: Carlos Kamienski (UFABC)

Work package: WP2 – Requirements Engineering and SDP Architecture

Task: Task 2.3 SDP Architecture

Deliverable type: R (Report)

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Carlos Kamienski (UFABC) 21/12/2015 First draft ready

0.3 Carlos Kamienski (UFABC) 23/12/2015 Second draft ready

Internal review history:

Reviewed by Date Summary of comments

Jussi Kiljander 07/01/2016 Approved with minor comments

Marc Jentsch 05/01/2016 Approved with minor comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the Impress Consortium make no warranty of any kind with regard to this document,

including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The Members of the Impress Consortium shall not be held liable for errors contained herein or

direct, indirect, special, incidental or consequential damages in connection with the furnishing,

performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects

solely the views of its authors. The European Commission is not liable for any use that may be made of
the information contained therein.

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 3 of 30 Submission date:

Index:

1. Executive summary ... 4

2. Introduction .. 5
2.1 Purpose and context of this deliverable ... 5
2.2 Scope of this deliverable.. 5
2.3 Document Structure.. 5

3. The IMPReSS System Development Platform .. 7

4. Software Architecture and ISO 42010 Standard 9
4.1 Software Architecture ... 9
4.2 The ISO/IEC/IEEE 42010:2011 Standard ... 9
4.3 Architecture Views .. 9
4.4 Architecture Framework .. 10
4.5 IoT Architectural Reference Model... 10

5. IMPReSS Software Architecture .. 12
5.1 IMPReSS Stakeholders .. 12
5.2 IMPReSS Architecture Views and Layers .. 12
5.3 IMPReSS Partner’s View .. 14
5.4 IMPReSS Developer’s View .. 16
5.5 IMPReSS Integrator’s View .. 16
5.6 IMPReSS Recipient’s View .. 17

6. IMPReSS Middleware Components .. 19
6.1 Context Manager .. 19

6.1.1 Design Choices ... 19
6.1.2 Entities and Templates .. 19
6.1.3 Context Manager Architecture .. 19

6.2 Data Manager .. 20
6.2.1 Data Model and Storage .. 21
6.2.2 Data Analysis ... 22

6.3 Resource Manager and Communication Manager 22
6.3.1 Mixed Criticality Resource Management Architecture 22
6.3.2 Global Resource Manager ... 23
6.3.3 Local Resource Manager .. 24

7. Scenario-based Architecture Instantiation .. 26
7.1 Energy Saver and Alarm System Scenarios .. 26
7.2 Interaction of Architectural Components .. 27

8. Conclusion ... 28

9. References .. 29

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 4 of 30 Submission date:

1. Executive summary

IMPReSS is an EU-Brazil cooperation project aiming at providing a System Development Platform

(SDP), which enables rapid and cost-effective development of mixed criticality complex systems
involving Internet of Things and Services (IoTS) and at the same time facilitates the interplay with

users and external systems. The IMPReSS development platform will be usable for any system
intended to embrace a smarter society. The demonstration and evaluation of the IMPReSS platform

will focus on energy efficiency systems addressing the reduction of energy usage and CO2 footprint
in public buildings, enhancing the intelligence of monitoring and control systems as well as

stimulating user energy awareness.

The architecture presented here is the second version of the IMPReSS Software Architecture, used
as the reference for building IMPReSS applications. As such, it provides views on different design

aspects and concerns of stakeholders of the IMPReSS platform. A unique software architecture plays
a key role in maintaining partners’ awareness of the IMPReSS platform capabilities so that they can

always refer to it when designing and implementing particular modules. The architecture establishes

fundamental concepts and properties of the system contextualized within its environment and
expressed by their elements and relationships and evolution guidelines.

This report covers functional as well as non-functional aspects that are important to support the
integration of different tasks involved in this project. The design process of the architecture has

been influenced by three key elements: a) the initial version of the architecture, presented in
(Kamienski et. al 2014); b) the detailed specification of the individual components; and c) the way

the IMPReSS Architecture has been used for developing application for particular scenarios.

Software Architectures have been discussed and used for some time in the software engineering
literature and they evolved over the years, adopting key concepts such as views, viewpoints, and

frameworks. After an initial process, that involved discussions and brainstorming, this architecture
has been conceived.

The IMPReSS Software Architecture is composed of four views, each one representing one

stakeholder’s view. The stakeholders identified for the IMPReSS Architecture are: a) IMPReSS
Partners; b) Application Developers; c) Solution Integrators; d) Final Recipients. The concept of user
is spread over these four stakeholders and therefore the term has not been adopted to avoid
misunderstandings.

The IMPReSS Systems Development Platform (SDP) is divided into two main components, which are

the IMPReSS User Interface and the IMPReSS Middleware. Both communicate through the IMPReSS
Middleware API. The UI modules runs in foreground and they are directly used by developers for

building applications, as well as for monitoring, deployment and maintenance activities. On the other
hand, the middleware runs in background where it is invoked by the IDE modules as well as by

external software and interacts with resources.

Functional and non-functional requirements have been mapped to the architecture views and

modules, in order to guarantee that requirements are fulfilled by one or more components and

therefore responsibilities can be tracked through the implementation.

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 5 of 30 Submission date:

2. Introduction

2.1 Purpose and context of this deliverable

The IMPReSS project aims at solving the complexity of a system development platform (SDP) by

providing a holistic approach that includes an Integrated Development Environment (IDE),

middleware components, and a deployment tool. The main technical and scientific objectives of the
IMPReSS project are:

 Developing an Integrated Development Environment (IDE) to facilitate Model-Driven

Development of Smarter Society Services.

 Providing a Service-Oriented Middleware to support Mixed Criticality Applications on

Resource-Constrained Platforms.

 Developing easy-to-use and configurable tools for Cloud-based Data Analysis and

Context Management.

 Develop Network and Communication management solution to handle the heterogeneity

of Internet of Things.

 Creating efficient Deployment Tools for Internet of Things applications.

The project’s results will be deployed in the Teatro Amazonas Opera House as an attractive

showcase to demonstrate the potential of a smart system for reducing energy usage and CO2
footprint in an existing public building. Another deployment will be in the campus of the Federal

University of Pernambuco.

The IMPReSS platform re-uses and extends results from several existing EU projects on Internet of

Things, middleware and energy efficiency and builds on Open Source platforms. The IMPReSS

project is carried out by a consortium already experienced with successful EU-Brazil collaboration.

The present document is the output of the task T2.3, whose main goal is to specify the general

architecture of the IMPReSS system, including aspects related to the identification of the major
system components, how they should interact, and define their external interfaces. It presents the

final version of the IMPReSS Software Architecture (or IMPReSS SDP Architecture), which adds upon

the first version of the architecture presented in Deliverable D2.2.1 (Kamienski et. al 2014a)

2.2 Scope of this deliverable

The IMPReSS development platform consists of a set of technologies that help to build general-

purpose applications accessing to a plethora of sources, such as information from the physical world,
analyzing and fusing relevant data, and performing monitoring and control operations on complex

systems. This is achieved through the definition of a number of tools and pre-defined modules that
can be managed and combined in order to define a specific logic flow.

This deliverable introduces the Final IMPReSS Software Architecture, which is the final view for the

design and implementation of the IMPReSS Platform. During the development of the various
modules of the IMPReSS Platform different partners refined them so that to implement their

intended features. This has been done via a distributed process that generated important feedback
for the IMPReSS Architecture since Deliverable D2.2.1 has been published.

This report covers functional as well as non-functional aspects that are of paramount importance to
support the integration of different tasks involved in this project

2.3 Document Structure

The remainder of this document is organized in six chapters.

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 6 of 30 Submission date:

 Chapter 3 (The IMPReSS System Development Platform) describes the IMPReSS concept

as background knowledge for the architecture discussion.

 Chapter 4 (Software Architecture and ISO 42010) explains the design process used in

the architecture specification.

 Chapter 5 (IMPReSS Software Architecture) presents the architecture of the system.

 Chapter 6 (IMPReSS Middleware Components) introduces some details of four

middleware components, namely Context Manager, Data Manager, Resource Manager

and Communications Manager.

 Chapter 7 (Scenario-based Architecture Instantiation) presents an instantiation of the

IMPReSS architecture focusing on the interaction of some modules for two particular

scenarios.

 Chapter 8 (Conclusion) presents the final thoughts about the architecture.

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 7 of 30 Submission date:

3. The IMPReSS System Development Platform

The IMPReSS development platform consists of a set of technologies organized into a set of
modules. In Figure 1, the IMPReSS SDP is presented according the DoW (Description of Work).

Figure 1 - The IMPReSS Platform (as proposed in the Description of Work – DoW)

The Application-domain Resources represents all the hardware and software that IMPReSS

middleware can interoperate with. These entities are physical world devices (e.g. sensors and

actuators, as well as hardware in general, such as smart phones and tablets), external and third-
parties systems, and open and proprietary services.

The resources are connected to the IMPReSS middleware through Service Proxies that expose their
functionalities. Service Proxies use a Resources Adaptation Interface (RAI) that allows the IMPReSS

middleware to connect the Application-domain Resources and expose their functionalities through a
common interface.

The Monitoring and Control Module aims to optimise complex system operations acting on available

Application-domain Resources exposed by Service Proxies. This module performs also Resource
Management operations for solving conflicts and scheduling and management of mixed-criticality.

This will make it possible to simultaneously run various 3rd party applications on the IMPReSS as the
mixed criticality middleware ensures that the more critical applications are not interfered by the less

critical ones when they need to access the resources. Additionally, in a situation where a resource

can be used simultaneously by multiple applications, this allows the applications to efficiently share
the available resources instead of having a dedicated resource for each application.

The Data, Policy, and Knowledge Storage is responsible for managing the persistence data and
information. This component makes the upper layers and modules independent of where the data is

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 8 of 30 Submission date:

stored, whether locally or in the cloud. Data and information to be maintained include for instance

historical sensor data, analysed information, learned knowledge, policies, configurations, etc. Within
this component, the Data Warehouse stores raw data from Application-domain Resources and

enhanced data and information inferred by sensor and data fusion modules.

The Sensor and Data Fusion Module processes inputs from available Application-domain Resources

by aggregating and filtering raw data and events (e.g. to ease scalability storing data with a
granularity suitable for the application, to perform high-data-rate applications etc.) and combining

data to synthesize new and enhanced application-domain information (e.g. calculating the average

temperature in a room using temperature measures from sensors deployed in the room or the
variable resistor values from voltage and current measures, etc.).

The Context Manager Module manages context information using data extracted from available
Application-domain Resources. It associates context information to raw and enhanced values. For

example, stating that temperature sensor, which its unique identifier is ‘1234’, is deployed in the

room identified as ‘bedroom’ on the ‘3rd floor’ of the building ‘xyz’ sited at ‘50th Avenue’, belonging to
‘abed’ company.

The Data Analysis & Support System Module extracts in a short time the information coming from
large amounts of data, in order to use this information in the decision-making processes. It provides

support to the control algorithms performed in the Monitoring and Control Module and generates
suggestions and alarms to user-side application. This module is in charge of performing runtime

analysis, allowing the system to be aware of its current status and adapting its operation depending

on the context information.

The Configuration Tool sets the policies of the whole platform. It shows to the platform Manager all

the devices and modules belonging to the system, allowing to configure the parameters of the
modules of the overall platform.

The Composition Tool allows the interconnection of various modules belonging to the platform. This

module is a commissioning tool used by the platform Integrator that allows defining the connections
among the different modules needed to implement specific application logic.

This framework is inspired by the SNMP (Simple Network Management Protocol) architecture and
aims at performing the configuration and integration of hardware and software resources. It is

composed by two components: a Configuration and Composition Manager and a Configuration
Agent. The Configuration and Composition Manager is the module in charge of managing the

configuration and composition processes of the other modules into the platform; it works as an

interface between the Configuration and Composition Tools and the various modules within the
platform. A Configuration Agent is associated with each module of the platform. It exposes

configuration and control parameters of a specific module to the Configuration and Composition
Manager. The Configuration Agent operates actually the configuration commands coordinated by

Configuration and Composition Manager. The association of an agent to each module makes the

system more expandable and scalable from the point of view of configuration issues.

The APIs for interfacing the IMPReSS provide methods for combining different modules and

commissioning the specific logic flow. The APIs are useful to set the parameters of the platform
modules to make the system effective and to operate on application level functionalities (e.g. for

system monitoring and control, fine-grained configuration, etc.)

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 9 of 30 Submission date:

4. Software Architecture and ISO 42010 Standard

This section presents the main concepts related to software architectures and the ISO 42010
standard and is aimed at levelling the knowledge of the readers on the motivation for and

terminology of the area. This is needed because Section 5 extensively uses the concepts exposed in
this section.

4.1 Software Architecture

The concept of Software Architecture has been around for some time but still there is no formal and
well-accepted definition. Nevertheless, some definitions do exist and they are widely used, such as

the one given by Kruchten (Kruchten 2003) and repeated by others:

“Software architecture encompasses the set of significant decisions about the organization
of a software system including the selection of the structural elements and their interfaces
by which the system is composed; behavior as specified in collaboration among those
elements; composition of these structural and behavioral elements into larger subsystems;
and an architectural style that guides this organization. Software architecture also involves
functionality, usability, resilience, performance, reuse, comprehensibility, economic and
technology constraints, tradeoffs and aesthetic concerns.”

The software architecture intuitively denotes the high level structures of a software system. It can
be defined as the set of structures needed to reason about the software system, which comprise the

software elements, the relations between them, and the properties of both elements and relations
(Clements 2010). The term software architecture also denotes the set of practices used to select,

define or design software architecture. Documenting software architecture facilitates communication

between stakeholders, captures early decisions about the high-level design, and allows reuse of
design components between projects (Bass 2012).

Software Architecture also plays a key role as a bridge between requirements and implementation
and therefore it assumes higher relevance to the IMPReSS project.

4.2 The ISO/IEC/IEEE 42010:2011 Standard

The ISO 42010 standard (ISO 2011), also called “Systems and Software Engineering - Architecture
Description” defines requirements on the description of system, software, and enterprise

architectures. It aims to standardize the practice of architecture description by defining standard

terms, presenting a conceptual foundation for expressing, communicating and reviewing
architectures, and specifying requirements that apply to architecture descriptions, architecture

frameworks, and architecture description languages.

The standard defines software architecture as “fundamental concepts or properties of a system in its

environment embodied in its elements, relationships, and in the principles of its design and

evolution”. Although this definition is short, it is coherent with the Kruchten definition presented in
section 4.1.

ISO 42010 is based on the older IEEE 1471 standard (IEEE 2003). Following its predecessor ISO
42010, it makes an important distinction between architectures and architecture descriptions.

Architecture descriptions are used to manage modern systems to improve communication and co-
operation, enabling them to work in an integrated and coherent fashion. An architecture description

includes one or more architecture views.

4.3 Architecture Views

A view addresses one or more of the concerns held by the system’s stakeholders, expressing the
architecture of the system-of-interest in accordance with an architecture viewpoint. An architecture

view is a collection of models representing the architecture of the whole system relative to a set of

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 10 of 30 Submission date:

architectural concerns. There are two key reasons to use architecture views. Firstly, because they

can better express the system by using different notations, which make it easier to understand and
consequently to implement. Secondly, because views are important mechanisms for achieving

separation of concerns in complex systems.

A well-known example of using views is the 4+1 Views of Software Architecture (Kruchten 1995). It

describes a view model composed of four views - logical, development, process and physical view –
with an additional use case view (the +1).

Viewpoints have two important roles in software architectures: establishing conventions about views

and framing concerns for stakeholders. An architecture viewpoint frames one or more concerns. A
concern can be framed by more than one viewpoint. A view is governed by its viewpoint: the

viewpoint establishes the conventions for constructing, interpreting, and analyzing the view to
address concerns framed by that viewpoint. Viewpoint conventions can include languages, notations,

model kinds, design rules, and/or modelling methods, analysis techniques, and other operations on

views.

4.4 Architecture Framework

An architecture framework establishes conventions, principles, and practices for the description of

architectures within a specific domain of application and/or community of stakeholders. A framework
provides a generic universe and a common vocabulary within which we can all cooperate together -

to address a specific issue.

Frameworks do not have to be comprehensive, but they should be leveraged to provide at least a

starter set of the issues and concerns that must be addressed in the development of architecture.

Frameworks usually use a set of components:

 Views/Presentation: Provide the mechanisms for communicating the information about

the relationships in the architecture.

 Methods: Provide the disciplines for gathering and organizing the data. Construct the

views in a way that helps ensure integrity, accuracy, and completeness.

 Knowledge: Support the application of the methods and the use of tools for views.

Over the years different frameworks have been defined, aiming at serving as reusable artifacts by

software architects.

4.5 IoT Architectural Reference Model

After much discussion about the core concepts of the IoT (Internet of Things) for several years, in

2009 a group of researchers from more than 20 large industrial companies and research institutions
joined forces to lay the foundation for the much needed common ground or a common

“architecture” for the Internet of Things: the IoT-Architecture project (IoT-A) was born. IoT-A has

become the European Commission’s flagship project in the European Union’s Seventh Framework
Program for Research and Development with respect to establishing an architecture for the Internet

of Things (Bassi 2013).

The central decision of the IoT-A project was to base its work on the current state of the art, rather

than applying a clean slate approach. As a result, common traits have been derived to form the

baseline of the IoT Architectural Reference Model (ARM). This has the major advantage of ensuring
that the model is backward-compatible, as well as the adoption of established, working solutions for

various aspects of the IoT (Bassi 2013).

Figure 2 depicts a functional model of IoT Architecture emphasizing the communication flow among

its components. The Functional Model contains seven longitudinal Functionality Groups (light blue)

complemented by two transversal Functionality Groups (Management and Security, dark blue).
These transversal groups provide functionalities that are required by each of the longitudinal groups.

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 11 of 30 Submission date:

The policies governing the transversal groups will not only be applied to the groups themselves, but

do also pertain to the longitudinal groups.

Figure 2 - IoT Architecture

A Physical Entity is represented in the digital world by a Virtual Entity. The IoT Process Management
FG relates to the conceptual integration of business process management systems with the IoT

ARM. The Service Organisation FG is a central Functionality Group that acts as a communication hub

between several other Functionality Groups. The Virtual Entity and IoT Service FGs include functions
that relate to interactions on the Virtual-Entity and IoT-Service abstraction levels, respectively. The

Communication FG abstracts the variety of interaction schemes derived from the many technologies
(Device FG) belonging to IoT systems and provides a common interface to the IoT Service FG. It

provides a simple interface for instantiating and for managing high-level information flow. In

particular, the following aspects are taken into account: starting from the top layers of the ISO/OSI
model it considers data representation, end to end path information, addressing issues (i.e.

Locator/ID split), network management and device specific features. The Management FG combines
all functionalities that are needed to govern an IoT system. The Security Functionality Group

(Security FG) is responsible for ensuring the security and privacy of IoT-A-compliant systems.

Since they have similar purposes, the IoT Reference Architecture share similarities with the IMPReSS
Architecture and it will be helpful in driving forthcoming decisions.

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 12 of 30 Submission date:

5. IMPReSS Software Architecture

The IMPReSS Initial Software Architecture has been inspired by the original IMPReSS platform
description, as illustrated by Figure 1. However, some modifications were made due to new

requirements and features, as well as a more mature view of the IMPReSS needs. In the remaining
part of this section, subsection 5.1 introduces the four IMPReSS stakeholders and section 5.2 defines

architecture views, which are in turn described from section 5.3 through section 5.6.

5.1 IMPReSS Stakeholders

The IEEE Std. 1471 definition of stakeholder (IEEE 2000) was adopted: “an individual, team, or

organization (or classes thereof) with interests in, or concerns relative to, a system”. For IMPReSS,

the choice of stakeholders was of paramount importance, due to its direct translation into
architecture views.

Four types of stakeholders have been identified, who may deal with the IMPReSS SDP. Each
stakeholder has interests and concerns, which influence the requirements and also the architecture

design. These stakeholders are:

• Partner: The IMPReSS Partner who contributes to the development of the IMPReSS System
Development Platform (SDP). Partners considered here are the European ones - FIT, CNET,

IN-JET, ISMB, VTT – and the Brazilian ones - UFPE, UFAM, TAO, CHESF, ENG, UFABC.
IMPReSS Partners have a natural broader view of the internal components of the architecture,

because they need to put them to work together by orchestrating components and dataflows.

• Developer: The Application Developer who uses the IMPReSS SDP to develop IMPReSS-

enabled Applications. Target applications are energy efficiency systems addressing the

reduction of energy usage and CO2 footprint, within the context of the Internet of Things
(IoT).

• Integrator: The Solution Integrator who installs, configures, deploys application, and
connects them to other external services and hardware components. Different people or

organizations may play the role of integrators. Integrators must have special interfaces (GUIs

actually, in different flavors, such as Web-based and smartphone/tablet apps) with the system
so that they are easily able to configure the system to operate under different circumstances

in different environments.

• Recipient: The Final Recipient, who is affected by the solution, such as university professors,

students and staff, employees of a company (with different skills and positions), audience of a
theater, or even house owners. These people can interact with the solution by means of

different interfaces (web-based, apps) for configuring certain parameters and receiving real

time information.

The term “user” was intentionally avoided because it can assume different meanings that vary

according to different contexts. For example, the typical user of IMPReSS is an Application
Developer rather than an end user, because the purpose of IMPReSS is to build a development

platform, which by definition is used by developers.

5.2 IMPReSS Architecture Views and Layers

The IMPReSS Software Architecture adopts four views, one for each stakeholder identified in section

5.1. No particular viewpoints are specified, but since stakeholders are in the center of the views,

their concerns are represented in the architecture. Figure 3 presents the interaction of the four
views, the external components (hardware and software) and the dataflow between stakeholders.

Partners, Developers and Integrators have to deal with Physical and Digital resources. The formers
are hardware components, mainly sensors and actuators, but also different types of equipment and

appliances that may take part in IMPReSS-enabled installations, such as air conditioners and

heaters.

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 13 of 30 Submission date:

Figure 3 starts with the Partner’s View following a right-to-left direction dataflow. IMPReSS Partners

have the responsibility to perform and fulfill the activities comprised by the workpackages and tasks
listed in the DoW. Depending on the task, partners can use digital and physical resources to achieve

the goal of the IMPReSS project. In the end, the System Development Platform (SDP) will be
developed and used by Application Developers, showed in the Developer’s View. Developers also

must interact with physical and digital resources when developing their applications, which in turn
are used by the Solution Integrator. Integrators also configure physical resources and connect

external services (digital resources) to deploy ready-to-use solutions to the Final Recipient.

Recipients access the solution in order to take advantage of its features.

Figure 3 - IMPReSS Architecture Views

The IMPReSS SDP (or platform) that will be used by Developers is composed by two broad software
components, namely the IMPReSS User Interface (UI) and the IMPReSS Middleware. The UI runs in

foreground and it is directly used by developers for building applications, whereas the middleware
runs in background and it is invoked by the UI module as well as by external software. Therefore

one can identify three layers in the IMPReSS Architecture (Figure 4):

1. Application/Solution: applications and solutions are placed in the same layer because they
are basically the same software, where applications have a broader range of UI options

since they are used by Integrators.

2. SDP: Composed by UI and middleware, the SDP uses resources and generates applications

(that in turn generate solutions).

3. Resources: Provide data to the Platform (middleware, more specifically) and receive

commands from it.

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 14 of 30 Submission date:

Resources	

Middleware	

UI	
SDP

Applica on/Solu on	

Figure 4 - IMPReSS Architectural Layers

5.3 IMPReSS Partner’s View

IMPReSS Partner’s View (Figure 5) shows that partners have the most complete view of the
IMPReSS Architecture. The UI contains a series of modules for allowing users to interact with the

platform and the middleware contains modules with background management responsibilities. The

main focus of the IMPReSS Platform has been on the development of Middleware components and
graphical interfaces for demonstrators. Therefore, here the UI components will only the described

briefly.

IMPReSS assumes that data is stored somewhere in the cloud, using conventional databases or

novel ones (such as big data). Local storage can also be used as a particular case and for auxiliary

purposes. Please notice that different cloud models may be used, so that public, private, hybrid, and
community (NIST 2011) cloud data storages are possible. Also, IMPReSS does not adopt a “one size

fits all” approach for data storage, making it possible for different database models to be used for
different middleware modules. Modules in the UI component of the IMPReSS Platform have

counterparts in the Middleware component and they communicate through the Middleware API.

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 15 of 30 Submission date:

IMPReSS	MIDDLEWARE	API	

Physical	and	Digital	Resources	

Resource	Adapta on	Interface	(RAI)		

Data		
UI	

Resource		
UI	

Context		
UI	

Communica on		
UI	U

I

M
id

d
le

w
a

re

P
la

tf
o

rm
 Storage 1

Storage 2

Storage 3

Storage 4

Data		
Manager	

Resource		
Manager	

Context		
Manager	

Communica on		
Manager	

Context		API	 Data		API	 Resource		API	 Comm		API	

Figure 5 - IMPReSS Partner’s View

Both UI and Middleware are comprised of four main modules, which are related to each other:

 Context UI: A graphical tool aimed at managing context information, for allowing Developers

to specify which features of context-awareness they need in their applications, ranging from

template specification for smart entities and situations to context modeling and rule

authoring. In other words, the Context UI exposes to Developers all context-related features
of the IMPReSS Platform that they choose to add into their applications. Based on the model

defined by Developers, this tool communicates with the background context manager
module that implements the templates, rules, sensor and data fusion, context model, and

the context-reasoning engine. Developers must also select and developed particular

configuration options to be disclosed to Integrators and even Recipients. The Context UI is
presented in Deliverable D6.5 (Kamienski et. al 2015b)

 Data UI: A graphical tool aimed at allowing Developers to enter the needed configuration for

the data analysis and support module that uses supervised and unsupervised learning for
helping IMPReSS applications to make more informed decisions, based not only on real time

but also historic data. The Data GUI will configure and interact to the Data Manager module
that runs in the IMPReSS Middleware.

 Resource UI: A graphical tool aimed at allowing Developers to specify all particular

information needed for the mixed criticality resource management, which may be performed

through parameterization or through a specially designed applications classification
language. This language is used for describing the run-time requirements of an application

in terms of its priority, device access scheme (exclusive or shared) and security. The
Resource GUI outputs this information formally as an application criticality description that

will be understood by the Resource Manager in the IMPReSS Middleware.

 Communication UI: A graphical tool for allowing Developers to specify all information

needed for dealing with communication in the IMPReSS Middleware. This tool is called
integration support tool in the IMPReSS DoW and it will provide a collection of templates for

different technologies.

The IMPReSS Platform Middleware modules offer background services for their UI counterparts:

 Context Manager: This module encompasses all background software components that a

typical context-aware middleware offers to its users (Perera 2013), such as context
templates, context models, context reasoning engine, and algorithms for sensor and data

fusion. It also interacts with the Storage Manager to data storage and retrieval. Resources

might be accessed directly or preferentially through the Resource and Communication
Managers. Section 6.1 summarizes the main features of the Context Manager.

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 16 of 30 Submission date:

 Data Manager: This module provides all software components needed to implement a data

and knowledge repository as well as data mining and machine learning algorithms to be
used by IMPReSS applications. The machine learning algorithms used to process context-

aware information for energy efficiency systems are within the Data Manager. Section 6.2

summarizes the main features of the Data Manager.

 Resource Manager: This module contains all software components needed for managing

mixed-criticality resources, such as device and subsystem resource management, resource

management and access scheduler, and security features for resource-constrained
subsystems. When it comes to implementation, the architecture of both Resource Manager

and Communication Manager are tightly related and are presented together in section 6.3.

 Communication Manager: This module implements all communication features of the

IMPReSS Platform, such as resource and service discovery and communication and networks
management. Also, it plays the role of a proxy (an intermediate module) for the other

modules to the Resource Adaptation Interface (RAI). When it comes to implementation, the
architecture of both Resource Manager and Communication Manager are tightly related and

are presented together in section 6.3. Also, the Resource Adaptation Interface (RAI) is

considered an integral part of the Communication Manager.

All UI and Middleware modules, as well as the IMPReSS Middleware API and the Resource

Adaptation Interface, will be further specified and refined during the project and documented in the
final architecture report.

5.4 IMPReSS Developer’s View

Figure 6 depicts the IMPReSS Developer’s View, highlighting the UI modules (Context, Data,
Resource and Communication) described in section 5.3. Developers have access to the graphical

interface and they can also add new modules and integrate them to the application connecting them
through the Middleware API. The internal details of the IMPReSS Middleware are hidden from

Developers, since the Middleware API provides everything they need. Developers are also aware of

the existence of external storage sources and physical and digital resources that must be
programmed and tested to work with the Application.

Developers may play the role of Integrators and in the case they have the same view presented in
section 5.5.

IMPReSS Middleware

IMPReSS	MIDDLEWARE	API	

Physical	and	Digital	Resources	

P
la

tf
o
rm

Data		
UI	

Resource		
UI	

Context		
UI	

Communica on		
UI	

Figure 6 - IMPReSS Developer’s View

5.5 IMPReSS Integrator’s View

IMPReSS Integrator’s View is depicted in Figure 7. Integrators are aware of the Application, which is
made available to them by Developers using the IMPReSS UI. During the development of the

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 17 of 30 Submission date:

application, Developers provided special interfaces for Integrators to be able to configure, install and

deploy it. Integrators are aware of the Application and Middleware, since they have to install them
and the procedures may be more or less automated for different Applications. Integrators are also

aware of the existence of external storage sources and physical and digital resources because they
need to interconnect them to the Application and to the Middleware through configuration

parameters.

Integrators may play the role of Developers, using the IMPReSS Platform to develop their own

Applications. For that particular case, their view is the normal Developer’s View presented in section

5.4. Alternatively, Integrators may be software developers using different non-IMPReSS-UI-based
platforms and they can connect them to the application through the Middleware API. Examples of

non-IMPReSS-UI-based platforms are third-party software commonly used by Integrators or they
own in-house developed software. By doing that they are able to enhance an IMPReSS Application

with features that have not being considered by both Partners and Developers.

Integrators access IMPReSS Applications through specially designed interfaces, such as Web or apps
for smartphones and tablets. Their non-IMPReSS-UI-based applications they access through their

own development tools.

Application
(IMPReSS-UI-based)

IMPReSS Middleware

IMPReSS	MIDDLEWARE	API	

Physical	and	Digital	Resources	

Application
(non-IMPReSS-UI-based)

Figure 7 - IMPReSS Integrator’s View

5.6 IMPReSS Recipient’s View

The IMPReSS Recipient’s View is depicted in Figure 8. Recipients have a more limited view of an

IMPReSS Application, which is called Solution after being deployed and eventually enhanced and
customized by Integrators. Recipients are the end-users or final beneficiaries of the technologies

developed by the IMPReSS project. They live, work, or have fun in physical spaces where energy

efficiency is considered of paramount importance and thus are immersed in pervasive environments,
where sensors and actuators are spread all over the place (physical resources).

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 18 of 30 Submission date:

Figure 8 - IMPReSS Recipient’s View

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 19 of 30 Submission date:

6. IMPReSS Middleware Components

This section provides some additional level of details on the four middleware components.
Interested readers are recommended to obtain the specific deliverables of each component,

references through the text.

6.1 Context Manager

The IMPReSS Context Manager that provides context templates, modeling, reasoning, and

algorithms for sensor data fusion. The design of the Context Manager and its implementation are
presented in Deliverable D6.3 (Kamienski et. al 2014a) and Deliverable D6.4 (Kamienski et. al

2015a) respectively.

6.1.1 Design Choices

An extensive research in the state of the art in context modelling and reasoning has been

undertaken in order to understand the options, choices, tradeoffs, and challenges in context
modelling and reasoning better. Based on these findings, two main design choices have been made:

 Object-oriented context modelling: the use of the same paradigm used for modelling and

developing systems in the last decades strongly influenced that choice. Moreover, there

exists already very mature underlying technology such as persistence storage and rule
engines that are designed based on object-oriented approach.

 Rule-based context reasoning: given that object-oriented context modelling was chosen, the

natural choice is to use rule-based reasoning, which is commonly used and offers different
existing tools that integrate with object-oriented programming languages. However, other

approaches for context reasoning may be incorporated later in case the use of rule-based
reasoning proofs itself to be insufficient to obtain reasonable results.

6.1.2 Entities and Templates

IMPReSS aims at providing reusable templates for energy efficiency context management, making it
easier and faster to add context-awareness features in building automation applications. The design

of context templates is characterized by context entities, their relationships, and their attributes.
Through an extensive requirements analysis, we identified seven entities that commonly exist in

typical context-aware building automation applications: Subject (people), Resource

(sensors/actuators), Place (rooms, floors), Fusion (data aggregation), Rule (decisions), Action
(commands to actuators) and Activity (schedule).

6.1.3 Context Manager Architecture

Figure 9 depicts the Context Manager Architecture and its relationships with other components of

IMPReSS. The IMPReSS Context Manager modules are:

 Context API: part of the IMPReSS Middleware API, it exposes a REST interface, allowing

other modules to interact with the Context Manager. Through the Context API entity

templates are configured in the Context Storage.

 Context Storage: responsible for storage and retrieval of context entity templates, via the

Context API. Any RDBMS with an Object-Relational Mapping (ORM) system may be used.
We used EclipseLink as ORM, together with PostgreSQL RDBMS.

 Reasoner: The Context Reasoner infers logical consequences from a set of facts. The

Reasoner is invoked by the Fuser and reads entities from the Context Storage. When it is
invoked with a set or parameters it searches the entire set of rules for a match, i.e., a rule

that matches the parameters. In case of rule conflicts, the Reasoner must select only one

rule to be executed based on some resolution mechanism. As a result of firing a rule, one or
more actions are performed and they usually refer to changing the configuration of devices

or equipments for dynamically adapting behavior, e.g. turning off an elevator or lowering

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 20 of 30 Submission date:

the temperature of an air conditioner. The Reasoner performs this task by sending

command messages to actuators through the Communication Proxy. Our implementation is
based on Drools1 (Expert and Workbench).

 Fuser: responsible for data fusion, which means the use of a set of techniques for combining

data from multiple sources or computing statistics. The Fuser is directly connected to the
Communication Proxy for receiving real time sensor data and when fusion criteria are met it

activates the Reasoner and stores the fused results. Also, fused data may become a virtual
sensor and be redirected back to the Fuser. Multiple fusion criteria may be active

concurrently and therefore this module plays a key role for the performance of the Context

Manager. In our implementation, fusion is performed by Esper2, which can perform Complex
Event Processing CEP) by filtering, analyzing, and fusing events in various ways,

configurable through an SQL-like language.

 Scheduler: Manages the agenda for prescheduled events (such as classes in a university)

and fires the Reasoner for taking appropriate actions.

 Communication Proxy: encapsulates communication with resources, interfacing with the

Communication Manager and with a MQTT3 broker.

 Local Data Storage: implements internal data storage, for sensor data, fused data and event

logging.

														Fuser 						Reasoner

Local	Data	
Storage	

Context API

Scheduler

Context Storage

Communica on	Proxy	

Place Subject

Resource Fusion

Rule Action

Activity

Figure 9 - IMPReSS Context Manager

6.2 Data Manager

The Data Manager consists of a set of technologies responsible for managing and storing data, as

well data mining and machine learning algorithms. These technologies are based on a NoSQL
database, more specifically, a graph-based one.

1 www.drools.org
2 www.espertech.com
3 mqtt.org

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 21 of 30 Submission date:

6.2.1 Data Model and Storage

Under the IMPReSS platform, the data semantics and analytics are fundamental features needed to
support the decision making process. Multi sensor data fusion provides a means to fuse raw data

into meaningful higher-level information for the users. Moreover, the recognition of the modeled
situations requires understanding the technicalities of each sensor, signal processing and sensor

fusion techniques to combine readings from different sensors. In such scenario, where the
information about the interconnectivity or the topology of the data is more important than, or as

important as, the data itself, the data modelling based on graph has several advantages.

First, graphs provide a natural and flexible way to represent information about real world (i.e. real
world objects are vertexes and relations between different objects are edges). Second, typical graph

databases provide built-in structures (i.e. nodes and edges) to represent graphs. Whereas in other
databases, relationships between entities in the data model would have to be handled by the

modeler at the model level. Or in other words, new tables or columns, at least in the SQL case,

would have to be maintained only for the sake of being used as query indirection stages that point
to other entities, probably via foreign keys.

For these reasons, the data modelling adopted in the project is based on a property graph
representation, implemented by most well-known NoSQL graph databases (i.e. Titan, Neo4J and

OrientDB.). In the realm of graphs' morphism, a property graph is a vertex/edge-labeled/attributed,
directed, multi-graph. The data modelling is based on sensor readings arranged in a certain physical

environment. The setting may have an infinite number of areas, which in turn may or may not

embody other areas within it. Each area may contain an indefinite number of devices that belong to
a sensor network. These devices will perform several measurements of the various parameters

throughout the day, while it is necessary to store a history of such readings possibly for an indefinite
time, depending on application requirements. A generic description of the IMPReSS scenario is

shown in Figure 10.

Figure 10 - IMPReSS Data Manager: Data Model for the Data, Policy and Knowledge

Graph databases are perhaps the most popular graph computing technology. They provide

transactional semantics such as ACID, which is typical of local databases, and eventual consistency,

which is typical of distributed databases. Different from in-memory graph toolkits, graph databases
use the disk to store the graph data. On sufficiently powerful machines, local graph databases can

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 22 of 30 Submission date:

support a couple billion edges while distributed systems can handle hundreds of billions of edges.

However most distributed graph-based NoSQL databases, like Neo4j, does not provide the means
for global graph algorithms to be performed within a reasonable milliseconds time scale, in a

hundreds of billions of edges scenario. And since WP5 tasks leverage heavily in the data processing
for the machine learning and data fusion techniques, be able to have a continuous feedback loop

that works almost in quasi real time and have a global view of the current and past state of the
system, mainly due to global graph algorithms, is invaluable. Considering this practical concern, we

adopt the Titan4 open implementation as distributed graph-based NoSQL database. The Data

Manager Data Model and graph-based implementation are presented in Deliverable D5.1.2 (Gomes
et. al 2015).

6.2.2 Data Analysis

Machine Learning algorithms are used to solve tasks for which the design of software using

traditional programming techniques is difficult. Machine failures prediction, filter for electronic mail

messages and user behaviour identification are examples of these tasks. Several different machine
learning algorithms have been proposed in the literature. These algorithms may be divided into

three categories: regression, classification and clustering algorithms. This categorization takes into
account whether or not one of the following aspects is considered: use of labeled training examples,

and real or discrete outputs. Machine Learning algorithms for IMPReSS are presented in Deliverable
D5.3 (Souto et. al 2015).

In clustering, samples in the training set are not labeled or classified. The objective is to form

clusters or natural groupings of the input samples. Cluster analysis can be used to provide insight in
the distribution of data, as a pre-processing level for other algorithms, etc. According to the

literature, different clustering algorithms lead to different results.

On the other hand, labeled training samples are available in classification and regression problems.

The objective of these algorithms is to find the best functional relationship between input and

output, called target or decision function. In regression problems, the outputs are continuous values
while the outputs are discrete values in classification problems. Again, several regression and

classification algorithms are available in the literature. These methods may achieve different
performances when evaluated in different problems.

Based on this context, the algorithms provided in the web application are divided into regression,
clustering and classification algorithms. It is important to mention that the algorithms were

developed using scikit-learn5 - an open source and commercially usable library based on Python.

Another important characteristic is the fact that scikit-learn is broadly used by companies like
Evernote, Spotify and DataRobot. Moreover, this library has a large open source community support

and documentation. In the next section, each algorithm used at the application will be explained.

6.3 Resource Manager and Communication Manager

When it comes to implementation, given the nature of mixed criticality systems implemented by the

Resource Manager, its implementation is very closely related to the Communication Manager.
Therefore, their features are presented together here, according to Deliverable 4.3 (Kiljander et. al

2015).

6.3.1 Mixed Criticality Resource Management Architecture

The mixed criticality resource management architecture (with some other closely related IMPReSS

components) is depicted in the Figure 11. It consists of following entities: applications, IoT
resources, Global Resource Manager (GRM), Local Resource Manager (LRM) and the Development &

Management Tools. These components work in co-operation with the other IMPReSS modules in

order to provide mixed criticality resource management functionality at the application and device

4 http://thinkaurelius.github.io/titan/
5 http://scikit-learn.org/

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 23 of 30 Submission date:

levels. In addition to these component an important part of the mixed criticality resource

management approach are the application and resource descriptions.

Figure 11 - Mixed criticality resource management architecture

Applications are software processes that provide a certain service for the user by utilizing IoT

resources (i.e., sensors and actuators) available in the given IoT environment. The IMPReSS SDP
provides two options for the developers. The preferred way to create applications is to use the

IMPReSS UI modules. However, it is also possible to write applications manually in any programming
language. In either case the application needs to utilize the mixed criticality middleware in order to

be able to access the IoT resources provide by the IMPReSS platform.

In the IMPReSS architecture the component responsible for virtualizing the resources and exposing
the resource functionality for applications is called IoTResource. There is one IoTResource for each

physical resource in the IoT system. The IoTResource consists of LRM and Resource Adaptation
Interface (RAI) components of which the LRM is the one responsible for mixed criticality

management aspects. The RAI component is described in more detail in Deliverable D3.1 (Ferrera

et. al 2014).

6.3.2 Global Resource Manager

At the system level, mixed criticality resource management is executed by the Global Resource
Manager. Its main goal is to optimize the behaviour of the IoT system by providing resource

management functionality at application and device levels. At the application-level the GRM
discovers suitable resources for each application and controls which applications can access which

resources in order to make sure that the behaviour of more critical applications is not compromised.

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 24 of 30 Submission date:

At the device-level the role of the GRM is to make sure that more critical devices are supplied with

power in the case of power shutdown. The device-level resource manager is based on the
assumption that in the case of a power outage the devices are supplied with power from backup a

battery or a generator. Whenever the available energy in the supply drops below a certain limit the
application-level resource manager turns of devices with a criticality level below a predefined

threshold.

The Global Resource Manager internal architecture is depicted in Figure 12. It consists of three

functional software components, called Application-level Resource Manager, Device-level Resource

Manager and System Knowledge Base, and three interface modules called Resource Catalogue
Interface, Global Resource Manager Protocol and System Knowledge Base Protocol.

Figure 12 - Global Resource Manager internal software architecture.

6.3.3 Local Resource Manager

At local level the resource management is performed by the LRM. The role of the LRM is twofold. At
the application-level it 1) controls that only applications that are authorised by the GRM access the

given resources and 2) schedules that request send by the applications (shared access scheme) so
that the most critical applications are served first. At the device-level it provides an interface for

Global Resource Manager to control which devices are provided with power in the case of a power
outage.

The LRM is implemented with Java programming language using Jersey6 RESTful Web Services

framework. The internal architecture of the IoTResource component (including the LRM) is
presented in the Figure 13.

6 https://jersey.java.net/

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 25 of 30 Submission date:

Figure 13 - IoTResource architecture.

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 26 of 30 Submission date:

7. Scenario-based Architecture Instantiation

The IMPReSS Software Architecture, as depicted by the Partners’ view in Figure 5, does not
determine any particular way wherein its components can interact. Given that IMPReSS Components

provide broad generic services, they can be interconnected in different ways through their REST
APIs. In order to be able to see how the components can interact, a specific scenario is needed,

which here are defined as two different applications: Energy Saver and Alarm System.

7.1 Energy Saver and Alarm System Scenarios

In the beginning of the scenario there are two applications (Energy saver and Alarm system) and

three types of IoT Resources (Presence sensor, Lights, Smart plugs) deployed into the system. The

first phase of the scenario is to show how the Energy Saver application works. The lights are
switched off when there is no class scheduled. When there is a class, presence sensors detect if a

row of seats in the classroom is empty. In the empty areas of the classroom, the lights are
automatically switched off.

Alice wonders how much energy will be consumed by the lights in future. For this, a pre-defined

model for machine learning has been fed with relevant data, using the Data Manager. Alice can now
request forecasts about energy consumption in the room in the IoT Catalogue, which gets the data

from the Data Analysis tools.

An important limitation is that presence detection sensors often gives false positives (empirical

evaluation), so that the second phase of the scenario demonstrates how new IoT Resources can be
easily deployed to enhance existing systems. No modifications need to be made to the existing

applications because of the IMPReSS platform. So, Bob, an integrator, decides to add Kinects to

improve presence detection. Bob searches for a driver available for the Kinects (this one has been
already developed by Alice or another developer and inserted in the repository of the ones available)

and then he uses it for the integration. The driver is installed at runtime in his RAI instance, using
the configuration tool. Finally, the IoT Resource Catalogue, interacting with the Local Resource

Manager, will discover the IoT resource, abstracted using the RAI. By checking the Kinect is

appearing in the Resource Catalogue, Bob verifies that the driver installation succeeded. Bob opens
the Context Manager, through the Context Modelling Tool (Context UI), and notices that the context

"row occupied" is defined through interpretation of the corresponding presence sensor. He extends
this context so that is considers a fusion of values from the existing presence sensors and the

Kinects.

As part of the configuration phase the Kinects must be added to the mixed criticality management,

which determines which power consumers shall be switched off in case of a power outage. For this,

all managed devices are connected to switchable smart plugs. Bob opens the Mixed Criticality
Resource Manager and sees that so far only an emergency light and two servers have assigned high

priority, the other power consumers in the classroom have low priority. Alice assigns the Kinects also
low priority. Afterwards, she performs a few tests for the use case again and empirically discovers

that there are less false positives. She uses the Context Manager to analyze the false positives.

Using the context graph allows her to easily track the context and find out why at a certain point the
light was switched off.

In the third phase of the scenario, mixed criticality resource management features are emphasized.
First application level mixed criticality is demonstrated. It is shown how the Alarm system takes

control of the lights whenever alarm signal is received from sensor (or simulated with an alarm

button). When alarm ends the alarm application releases the lights and the control is granted to the
energy saver application. Then device level mixed criticality is illustrated by a power outage. The

Mixed Criticality Manager switches off the low priority devices immediately. After some time when
the fuel has decreased to a certain level, the Mixed Criticality Manager checks again if the power

outage still occurs. If yes, it switches off the next class of devices. After the power outage has
ended, the Mixed Criticality Manager makes sure to switch on all devices after the grid has

stabilized. Higher priority devices are switched on before lower priority ones. The priority of devices

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 27 of 30 Submission date:

can be easily changed so that it can be adjusted for the needs of the different departments. This is

explored in the Mixed Criticality GUI.

7.2 Interaction of Architectural Components

Figure 14 depicts how the components of the IMPReSS Architecture can be interconnected for

implementing the Energy Saver and Alarm System Scenario. IMPReSS components are represented
in blue, whereas customized components are represented in grey. It can be observed that not

necessarily all sub-components are represented in that picture, in order to make it cleaner and to be
easier understood by the reader. For example, it is mentioned that Bob uses the Context Manager

through the Context UI (Modelling Tool), even though UI components are not represented in the
picture. The Energy Saver Application represents a customization of the Context UI for that

particular purpose.

Energy	Saver	
Applica on	

Energy	
Consump on	

Monitor	

Alarm	System	

Data	Manager	

	
Data	Storage	

	

	
Data	Analysis	

	

Global	Resource	
Manager	

Applica on-	
Level	Resource	

Manager	

Device-Level	
Resource	
Manager	

IoT	Resource	

Resource	
Adapta on	
Interface	

Local	Resource	
Manager	

IoT	Resource	
Catalogue	

Context	
Manager	

Figure 14 - IMPReSS Architecture – Instantiation for the Energy Saver and Alarm Scenarios

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 28 of 30 Submission date:

8. Conclusion

This report describes the thoughts and views that lead to the design of the second and final version
of the IMPReSS Software Architecture. This initial architecture, described in the DoW, and the initial

IMPReSS software architecture, serving as a comprehensive and unique view of the big picture,
played a key role in maintaining partners aware of the IMPReSS SDP. Integration was a key concern

when adopting a highly distributed software development process and that was the approach

followed in the IMPReSS project.

The design of this final version of the IMPReSS Software Architecture involved an extensive learning

process about the existing knowledge held by the partners and expressed in the original IMPReSS
platform, which was presented in the project proposal. Also, it required certain control of the

evolution of the architecture and its approaches since the initial architecture has been published.
This architecture has been used for supporting the design of scenarios, prototype implementations,

demos, reviews, troubleshooting and performance analysis studies.

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 29 of 30 Submission date:

9. References

(Bass 2012) Bass, Len; Paul Clements, Rick Kazman (2012). Software Architecture In

Practice, Third Edition. Boston: Addison-Wesley. pp. 21–24.

(Bassi 2013) Alessandro Bassi ;Martin Bauer; Martin Fiedler ; Thorsten Kramp ; Rob

van Kranenburg ;Sebastian Lange ; Stefan Meissner (Springer 2013).

Enabling Things to Talk: Designing IoT solutions with the IoT
Architectural Reference Model

(Clements 2010) Clements, Paul; Felix Bachmann, Len Bass, David Garlan, James Ivers,
Reed Little, Paulo Merson, Robert Nord, Judith Stafford (2010).

Documenting Software Architectures: Views and Beyond, Second
Edition. Boston: Addison-Wesley.

(Ferrera et. al 2014) Ferrera, E., et. al (2014), “Resource Adaptation Interface Framework”,

IMPReSS Consortium, Deliverable D3.1, June 2014.

(Gomes et. al 2015) Gomes, L. et. al (2015), “Updated Data Analysis & Knowledge

Repository Technical Specifications & Guidelines”, IMPReSS Consortium,
Deliverable D5.1.2, March 2015.

(Hailpern 2006) Hailpern, B., Tarr, P. (2006), “Model-driven development: The good, the

bad, and the ugly”, IBM Systems Journal, 45(3), pp. 451-461.

(IEEE 2000) IEEE, “Recommended Practice for Architectural Description of Software-

intensive Systems”, IEEE Std 1471:2000.

(ISO 2011) ISO, “Systems and software engineering — Architecture description”,

ISO/IEC/IEEE 42010:2011.

(Kamienski et. al 2014a) Kamienski, C., Borelli, F., Oliveira, G., Moretti, W., Pinheiro, I.,

Zyrianoff (2014), SDP Initial Architecture Report, IMPReSS Consortium,

Deliverable D2.2.1, February 2014.

(Kamienski et. al 2014b) Kamienski, C., Borelli, F., Oliveira, G., Moretti, W., Pinheiro, I.,

Zyrianoff (2014), Context Management Framework Architecture and
Design of Context Templates, IMPReSS Consortium, Deliverable D6.3,

November 2014.

(Kamienski et. al 2015a) Kamienski, C., Borelli, F., Oliveira, G., Moretti, W., Pinheiro, I.,
Zyrianoff (2015), Implementation of Context Reasoning Engine,

IMPReSS Consortium, Deliverable D6.4, March 2015.

(Kamienski et. al 2015b) Kamienski, C., Borelli, F., Oliveira, G., Moretti, W., Pinheiro, I.,

Zyrianoff (2014), , Deliverable D6.5, March 2015.

(Kiljander et. al 2015) Kiljander, J., et. al (2015), “Resource Management & Access Scheduler”,
IMPReSS Consortium, Deliverable D4.3, October 2015.

(Kruchten 1995) Kruchten, P., “The 4+1 View Model of Architecture”, IEEE Software, vol.
12, no. 6, pp. 42-50, November 1995.

(Kruchten 2003) Kruchten, P., “The Rational Unified Process: An Introduction”, Addison-
Wesley, 3rd ed., 2003.

(NIST 2011) Mell, P., Grance, T., “The NIST Definition of Cloud Computing”, NIST

Special Publication 800-145, 2011.

(Perera 2013) Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D., “Context

Aware Computing for The Internet of Things: A Survey”, Accepted for
IEEE Communications Surveys and Tutorials, 2013.

IMPReSS D2.2.2 SDP Final Architecture Report

Document version: 0.3 Page 30 of 30 Submission date:

(Souto et. al 2015) Souto, E. et. al, “Data Mining and Machine Learning Tools”, IMPReSS

Consortium, Deliverable D5.3, February 2015.

