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1.  Executive summary 

IMPReSS is an EU-Brazil cooperation project aiming at providing a System Development Platform 

(SDP), which enables rapid and cost-effective development of mixed criticality complex systems 
involving Internet of Things and Services (IoTS) and at the same time facilitates the interplay with 

users and external systems. The IMPReSS development platform will be usable for any system 
intended to embrace a smarter society. The demonstration and evaluation of the IMPReSS platform 

will focus on energy efficiency systems addressing the reduction of energy usage and CO2 footprint 
in public buildings, enhancing the intelligence of monitoring and control systems as well as 

stimulating user energy awareness.  

The architecture presented here is the second version of the IMPReSS Software Architecture, used 
as the reference for building IMPReSS applications. As such, it provides views on different design 

aspects and concerns of stakeholders of the IMPReSS platform. A unique software architecture plays 
a key role in maintaining partners’ awareness of the IMPReSS platform capabilities so that they can 

always refer to it when designing and implementing particular modules. The architecture establishes 

fundamental concepts and properties of the system contextualized within its environment and 
expressed by their elements and relationships and evolution guidelines.  

This report covers functional as well as non-functional aspects that are important to support the 
integration of different tasks involved in this project. The design process of the architecture has 

been influenced by three key elements: a) the initial version of the architecture, presented in 
(Kamienski et. al 2014); b) the detailed specification of the individual components; and c) the way 

the IMPReSS Architecture has been used for developing application for particular scenarios.  

Software Architectures have been discussed and used for some time in the software engineering 
literature and they evolved over the years, adopting key concepts such as views, viewpoints, and 

frameworks. After an initial process, that involved discussions and brainstorming, this architecture 
has been conceived. 

The IMPReSS Software Architecture is composed of four views, each one representing one 

stakeholder’s view. The stakeholders identified for the IMPReSS Architecture are: a) IMPReSS 
Partners; b) Application Developers; c) Solution Integrators; d) Final Recipients. The concept of user 
is spread over these four stakeholders and therefore the term has not been adopted to avoid 
misunderstandings. 

The IMPReSS Systems Development Platform (SDP) is divided into two main components, which are 

the IMPReSS User Interface and the IMPReSS Middleware. Both communicate through the IMPReSS 
Middleware API. The UI modules runs in foreground and they are directly used by developers for 

building applications, as well as for monitoring, deployment and maintenance activities. On the other 
hand, the middleware runs in background where it is invoked by the IDE modules as well as by 

external software and interacts with resources. 

Functional and non-functional requirements have been mapped to the architecture views and 

modules, in order to guarantee that requirements are fulfilled by one or more components and 

therefore responsibilities can be tracked through the implementation. 
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2. Introduction 

2.1 Purpose and context of this deliverable 

The IMPReSS project aims at solving the complexity of a system development platform (SDP) by 

providing a holistic approach that includes an Integrated Development Environment (IDE), 

middleware components, and a deployment tool. The main technical and scientific objectives of the 
IMPReSS project are: 

 Developing an Integrated Development Environment (IDE) to facilitate Model-Driven 

Development of Smarter Society Services. 

 Providing a Service-Oriented Middleware to support Mixed Criticality Applications on 

Resource-Constrained Platforms. 

 Developing easy-to-use and configurable tools for Cloud-based Data Analysis and 

Context Management. 

 Develop Network and Communication management solution to handle the heterogeneity 

of Internet of Things. 

 Creating efficient Deployment Tools for Internet of Things applications. 

The project’s results will be deployed in the Teatro Amazonas Opera House as an attractive 

showcase to demonstrate the potential of a smart system for reducing energy usage and CO2 
footprint in an existing public building. Another deployment will be in the campus of the Federal 

University of Pernambuco. 

The IMPReSS platform re-uses and extends results from several existing EU projects on Internet of 

Things, middleware and energy efficiency and builds on Open Source platforms. The IMPReSS 

project is carried out by a consortium already experienced with successful EU-Brazil collaboration. 

The present document is the output of the task T2.3, whose main goal is to specify the general 

architecture of the IMPReSS system, including aspects related to the identification of the major 
system components, how they should interact, and define their external interfaces. It presents the 

final version of the IMPReSS Software Architecture (or IMPReSS SDP Architecture), which adds upon 

the first version of the architecture presented in Deliverable D2.2.1 (Kamienski et. al 2014a) 

2.2 Scope of this deliverable 

The IMPReSS development platform consists of a set of technologies that help to build general-

purpose applications accessing to a plethora of sources, such as information from the physical world, 
analyzing and fusing relevant data, and performing monitoring and control operations on complex 

systems. This is achieved through the definition of a number of tools and pre-defined modules that 
can be managed and combined in order to define a specific logic flow.  

This deliverable introduces the Final IMPReSS Software Architecture, which is the final view for the 

design and implementation of the IMPReSS Platform. During the development of the various 
modules of the IMPReSS Platform different partners refined them so that to implement their 

intended features. This has been done via a distributed process that generated important feedback 
for the IMPReSS Architecture since Deliverable D2.2.1 has been published. 

This report covers functional as well as non-functional aspects that are of paramount importance to 
support the integration of different tasks involved in this project  

2.3 Document Structure 

The remainder of this document is organized in six chapters. 
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 Chapter 3 (The IMPReSS System Development Platform) describes the IMPReSS concept 

as background knowledge for the architecture discussion. 

 Chapter 4 (Software Architecture and ISO 42010) explains the design process used in 

the architecture specification.  

 Chapter 5 (IMPReSS Software Architecture) presents the architecture of the system. 

 Chapter 6 (IMPReSS Middleware Components) introduces some details of four 

middleware components, namely Context Manager, Data Manager, Resource Manager 

and Communications Manager. 

 Chapter 7 (Scenario-based Architecture Instantiation) presents an instantiation of the 

IMPReSS architecture focusing on the interaction of some modules for two particular 

scenarios. 

 Chapter 8 (Conclusion) presents the final thoughts about the architecture. 
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3. The IMPReSS System Development Platform 

The IMPReSS development platform consists of a set of technologies organized into a set of 
modules. In Figure 1, the IMPReSS SDP is presented according the DoW (Description of Work). 

 

Figure 1 - The IMPReSS Platform (as proposed in the Description of Work – DoW) 

The Application-domain Resources represents all the hardware and software that IMPReSS 

middleware can interoperate with. These entities are physical world devices (e.g. sensors and 

actuators, as well as hardware in general, such as smart phones and tablets), external and third-
parties systems, and open and proprietary services. 

The resources are connected to the IMPReSS middleware through Service Proxies that expose their 
functionalities. Service Proxies use a Resources Adaptation Interface (RAI) that allows the IMPReSS 

middleware to connect the Application-domain Resources and expose their functionalities through a 
common interface. 

The Monitoring and Control Module aims to optimise complex system operations acting on available 

Application-domain Resources exposed by Service Proxies. This module performs also Resource 
Management operations for solving conflicts and scheduling and management of mixed-criticality. 

This will make it possible to simultaneously run various 3rd party applications on the IMPReSS as the 
mixed criticality middleware ensures that the more critical applications are not interfered by the less 

critical ones when they need to access the resources. Additionally, in a situation where a resource 

can be used simultaneously by multiple applications, this allows the applications to efficiently share 
the available resources instead of having a dedicated resource for each application. 

The Data, Policy, and Knowledge Storage is responsible for managing the persistence data and 
information. This component makes the upper layers and modules independent of where the data is 
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stored, whether locally or in the cloud. Data and information to be maintained include for instance 

historical sensor data, analysed information, learned knowledge, policies, configurations, etc. Within 
this component, the Data Warehouse stores raw data from Application-domain Resources and 

enhanced data and information inferred by sensor and data fusion modules. 

The Sensor and Data Fusion Module processes inputs from available Application-domain Resources 

by aggregating and filtering raw data and events (e.g. to ease scalability storing data with a 
granularity suitable for the application, to perform high-data-rate applications etc.) and combining 

data to synthesize new and enhanced application-domain information (e.g. calculating the average 

temperature in a room using temperature measures from sensors deployed in the room or the 
variable resistor values from voltage and current measures, etc.). 

The Context Manager Module manages context information using data extracted from available 
Application-domain Resources. It associates context information to raw and enhanced values. For 

example, stating that temperature sensor, which its unique identifier is ‘1234’, is deployed in the 

room identified as ‘bedroom’ on the ‘3rd floor’ of the building ‘xyz’ sited at ‘50th Avenue’, belonging to 
‘abed’ company. 

The Data Analysis & Support System Module extracts in a short time the information coming from 
large amounts of data, in order to use this information in the decision-making processes. It provides 

support to the control algorithms performed in the Monitoring and Control Module and generates 
suggestions and alarms to user-side application. This module is in charge of performing runtime 

analysis, allowing the system to be aware of its current status and adapting its operation depending 

on the context information.  

The Configuration Tool sets the policies of the whole platform. It shows to the platform Manager all 

the devices and modules belonging to the system, allowing to configure the parameters of the 
modules of the overall platform.  

The Composition Tool allows the interconnection of various modules belonging to the platform. This 

module is a commissioning tool used by the platform Integrator that allows defining the connections 
among the different modules needed to implement specific application logic. 

This framework is inspired by the SNMP (Simple Network Management Protocol) architecture and 
aims at performing the configuration and integration of hardware and software resources. It is 

composed by two components: a Configuration and Composition Manager and a Configuration 
Agent. The Configuration and Composition Manager is the module in charge of managing the 

configuration and composition processes of the other modules into the platform; it works as an 

interface between the Configuration and Composition Tools and the various modules within the 
platform. A Configuration Agent is associated with each module of the platform. It exposes 

configuration and control parameters of a specific module to the Configuration and Composition 
Manager. The Configuration Agent operates actually the configuration commands coordinated by 

Configuration and Composition Manager. The association of an agent to each module makes the 

system more expandable and scalable from the point of view of configuration issues. 

The APIs for interfacing the IMPReSS provide methods for combining different modules and 

commissioning the specific logic flow. The APIs are useful to set the parameters of the platform 
modules to make the system effective and to operate on application level functionalities (e.g. for 

system monitoring and control, fine-grained configuration, etc.) 
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4. Software Architecture and ISO 42010 Standard 

This section presents the main concepts related to software architectures and the ISO 42010 
standard and is aimed at levelling the knowledge of the readers on the motivation for and 

terminology of the area. This is needed because Section 5 extensively uses the concepts exposed in 
this section. 

4.1 Software Architecture 

The concept of Software Architecture has been around for some time but still there is no formal and 
well-accepted definition. Nevertheless, some definitions do exist and they are widely used, such as 

the one given by Kruchten (Kruchten 2003) and repeated by others: 

“Software architecture encompasses the set of significant decisions about the organization 
of a software system including the selection of the structural elements and their interfaces 
by which the system is composed; behavior as specified in collaboration among those 
elements; composition of these structural and behavioral elements into larger subsystems; 
and an architectural style that guides this organization. Software architecture also involves 
functionality, usability, resilience, performance, reuse, comprehensibility, economic and 
technology constraints, tradeoffs and aesthetic concerns.” 

The software architecture intuitively denotes the high level structures of a software system. It can 
be defined as the set of structures needed to reason about the software system, which comprise the 

software elements, the relations between them, and the properties of both elements and relations 
(Clements 2010). The term software architecture also denotes the set of practices used to select, 

define or design software architecture. Documenting software architecture facilitates communication 

between stakeholders, captures early decisions about the high-level design, and allows reuse of 
design components between projects (Bass 2012). 

Software Architecture also plays a key role as a bridge between requirements and implementation 
and therefore it assumes higher relevance to the IMPReSS project. 

4.2 The ISO/IEC/IEEE 42010:2011 Standard 

The ISO 42010 standard (ISO 2011), also called “Systems and Software Engineering - Architecture 
Description” defines requirements on the description of system, software, and enterprise 

architectures. It aims to standardize the practice of architecture description by defining standard 

terms, presenting a conceptual foundation for expressing, communicating and reviewing 
architectures, and specifying requirements that apply to architecture descriptions, architecture 

frameworks, and architecture description languages.  

The standard defines software architecture as “fundamental concepts or properties of a system in its 

environment embodied in its elements, relationships, and in the principles of its design and 

evolution”. Although this definition is short, it is coherent with the Kruchten definition presented in 
section 4.1. 

ISO 42010 is based on the older IEEE 1471 standard (IEEE 2003). Following its predecessor ISO 
42010, it makes an important distinction between architectures and architecture descriptions. 

Architecture descriptions are used to manage modern systems to improve communication and co-
operation, enabling them to work in an integrated and coherent fashion. An architecture description 

includes one or more architecture views.  

4.3 Architecture Views 

A view addresses one or more of the concerns held by the system’s stakeholders, expressing the 
architecture of the system-of-interest in accordance with an architecture viewpoint. An architecture 

view is a collection of models representing the architecture of the whole system relative to a set of 
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architectural concerns. There are two key reasons to use architecture views. Firstly, because they 

can better express the system by using different notations, which make it easier to understand and 
consequently to implement. Secondly, because views are important mechanisms for achieving 

separation of concerns in complex systems. 

A well-known example of using views is the 4+1 Views of Software Architecture (Kruchten 1995). It 

describes a view model composed of four views - logical, development, process and physical view – 
with an additional use case view (the +1).  

Viewpoints have two important roles in software architectures: establishing conventions about views 

and framing concerns for stakeholders. An architecture viewpoint frames one or more concerns. A 
concern can be framed by more than one viewpoint. A view is governed by its viewpoint: the 

viewpoint establishes the conventions for constructing, interpreting, and analyzing the view to 
address concerns framed by that viewpoint. Viewpoint conventions can include languages, notations, 

model kinds, design rules, and/or modelling methods, analysis techniques, and other operations on 

views. 

4.4 Architecture Framework 

An architecture framework establishes conventions, principles, and practices for the description of 

architectures within a specific domain of application and/or community of stakeholders. A framework 
provides a generic universe and a common vocabulary within which we can all cooperate together - 

to address a specific issue.  

Frameworks do not have to be comprehensive, but they should be leveraged to provide at least a 

starter set of the issues and concerns that must be addressed in the development of architecture. 

Frameworks usually use a set of components:  

 Views/Presentation: Provide the mechanisms for communicating the information about 

the relationships in the architecture. 

 Methods: Provide the disciplines for gathering and organizing the data. Construct the 

views in a way that helps ensure integrity, accuracy, and completeness. 

 Knowledge: Support the application of the methods and the use of tools for views. 

Over the years different frameworks have been defined, aiming at serving as reusable artifacts by 

software architects. 

4.5 IoT Architectural Reference Model  

After much discussion about the core concepts of the IoT (Internet of Things) for several years, in 

2009 a group of researchers from more than 20 large industrial companies and research institutions 
joined forces to lay the foundation for the much needed common ground or a common 

“architecture” for the Internet of Things: the IoT-Architecture project (IoT-A) was born. IoT-A has 

become the European Commission’s flagship project in the European Union’s Seventh Framework 
Program for Research and Development with respect to establishing an architecture for the Internet 

of Things (Bassi 2013). 

The central decision of the IoT-A project was to base its work on the current state of the art, rather 

than applying a clean slate approach. As a result, common traits have been derived to form the 

baseline of the IoT Architectural Reference Model (ARM). This has the major advantage of ensuring 
that the model is backward-compatible, as well as the adoption of established, working solutions for 

various aspects of the IoT (Bassi 2013). 

Figure 2 depicts a functional model of IoT Architecture emphasizing the communication flow among 

its components. The Functional Model contains seven longitudinal Functionality Groups (light blue) 

complemented by two transversal Functionality Groups (Management and Security, dark blue). 
These transversal groups provide functionalities that are required by each of the longitudinal groups. 
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The policies governing the transversal groups will not only be applied to the groups themselves, but 

do also pertain to the longitudinal groups. 

 

Figure 2 - IoT Architecture 

A Physical Entity is represented in the digital world by a Virtual Entity. The IoT Process Management 
FG relates to the conceptual integration of business process management systems with the IoT 

ARM. The Service Organisation FG is a central Functionality Group that acts as a communication hub 

between several other Functionality Groups. The Virtual Entity and IoT Service FGs include functions 
that relate to interactions on the Virtual-Entity and IoT-Service abstraction levels, respectively. The 

Communication FG abstracts the variety of interaction schemes derived from the many technologies 
(Device FG) belonging to IoT systems and provides a common interface to the IoT Service FG. It 

provides a simple interface for instantiating and for managing high-level information flow. In 

particular, the following aspects are taken into account: starting from the top layers of the ISO/OSI 
model it considers data representation, end to end path information, addressing issues (i.e. 

Locator/ID split), network management and device specific features. The Management FG combines 
all functionalities that are needed to govern an IoT system. The Security Functionality Group 

(Security FG) is responsible for ensuring the security and privacy of IoT-A-compliant systems. 

Since they have similar purposes, the IoT Reference Architecture share similarities with the IMPReSS 
Architecture and it will be helpful in driving forthcoming decisions.  
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5. IMPReSS Software Architecture 

The IMPReSS Initial Software Architecture has been inspired by the original IMPReSS platform 
description, as illustrated by Figure 1. However, some modifications were made due to new 

requirements and features, as well as a more mature view of the IMPReSS needs. In the remaining 
part of this section, subsection 5.1 introduces the four IMPReSS stakeholders and section 5.2 defines 

architecture views, which are in turn described from section 5.3 through section 5.6. 

5.1 IMPReSS Stakeholders 

The IEEE Std. 1471 definition of stakeholder (IEEE 2000) was adopted: “an individual, team, or 

organization (or classes thereof) with interests in, or concerns relative to, a system”. For IMPReSS, 

the choice of stakeholders was of paramount importance, due to its direct translation into 
architecture views.  

Four types of stakeholders have been identified, who may deal with the IMPReSS SDP. Each 
stakeholder has interests and concerns, which influence the requirements and also the architecture 

design. These stakeholders are: 

• Partner: The IMPReSS Partner who contributes to the development of the IMPReSS System 
Development Platform (SDP). Partners considered here are the European ones - FIT, CNET, 

IN-JET, ISMB, VTT – and the Brazilian ones - UFPE, UFAM, TAO, CHESF, ENG, UFABC. 
IMPReSS Partners have a natural broader view of the internal components of the architecture, 

because they need to put them to work together by orchestrating components and dataflows.  

• Developer: The Application Developer who uses the IMPReSS SDP to develop IMPReSS-

enabled Applications. Target applications are energy efficiency systems addressing the 

reduction of energy usage and CO2 footprint, within the context of the Internet of Things 
(IoT). 

• Integrator: The Solution Integrator who installs, configures, deploys application, and 
connects them to other external services and hardware components. Different people or 

organizations may play the role of integrators. Integrators must have special interfaces (GUIs 

actually, in different flavors, such as Web-based and smartphone/tablet apps) with the system 
so that they are easily able to configure the system to operate under different circumstances 

in different environments. 

• Recipient: The Final Recipient, who is affected by the solution, such as university professors, 

students and staff, employees of a company (with different skills and positions), audience of a 
theater, or even house owners. These people can interact with the solution by means of 

different interfaces (web-based, apps) for configuring certain parameters and receiving real 

time information. 

The term “user” was intentionally avoided because it can assume different meanings that vary 

according to different contexts. For example, the typical user of IMPReSS is an Application 
Developer rather than an end user, because the purpose of IMPReSS is to build a development 

platform, which by definition is used by developers. 

5.2 IMPReSS Architecture Views and Layers 

The IMPReSS Software Architecture adopts four views, one for each stakeholder identified in section 

5.1. No particular viewpoints are specified, but since stakeholders are in the center of the views, 

their concerns are represented in the architecture. Figure 3 presents the interaction of the four 
views, the external components (hardware and software) and the dataflow between stakeholders. 

Partners, Developers and Integrators have to deal with Physical and Digital resources. The formers 
are hardware components, mainly sensors and actuators, but also different types of equipment and 

appliances that may take part in IMPReSS-enabled installations, such as air conditioners and 

heaters.  
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Figure 3 starts with the Partner’s View following a right-to-left direction dataflow. IMPReSS Partners 

have the responsibility to perform and fulfill the activities comprised by the workpackages and tasks 
listed in the DoW. Depending on the task, partners can use digital and physical resources to achieve 

the goal of the IMPReSS project. In the end, the System Development Platform (SDP) will be 
developed and used by Application Developers, showed in the Developer’s View. Developers also 

must interact with physical and digital resources when developing their applications, which in turn 
are used by the Solution Integrator. Integrators also configure physical resources and connect 

external services (digital resources) to deploy ready-to-use solutions to the Final Recipient. 

Recipients access the solution in order to take advantage of its features. 

 

Figure 3 - IMPReSS Architecture Views 

The IMPReSS SDP (or platform) that will be used by Developers is composed by two broad software 
components, namely the IMPReSS User Interface (UI) and the IMPReSS Middleware. The UI runs in 

foreground and it is directly used by developers for building applications, whereas the middleware 
runs in background and it is invoked by the UI module as well as by external software. Therefore 

one can identify three layers in the IMPReSS Architecture (Figure 4):  

1. Application/Solution: applications and solutions are placed in the same layer because they 
are basically the same software, where applications have a broader range of UI options 

since they are used by Integrators. 

2. SDP: Composed by UI and middleware, the SDP uses resources and generates applications 

(that in turn generate solutions). 

3. Resources: Provide data to the Platform (middleware, more specifically) and receive 

commands from it. 
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Figure 4 - IMPReSS Architectural Layers 

5.3 IMPReSS Partner’s View 

IMPReSS Partner’s View (Figure 5) shows that partners have the most complete view of the 
IMPReSS Architecture. The UI contains a series of modules for allowing users to interact with the 

platform and the middleware contains modules with background management responsibilities. The 

main focus of the IMPReSS Platform has been on the development of Middleware components and 
graphical interfaces for demonstrators. Therefore, here the UI components will only the described 

briefly. 

IMPReSS assumes that data is stored somewhere in the cloud, using conventional databases or 

novel ones (such as big data). Local storage can also be used as a particular case and for auxiliary 

purposes. Please notice that different cloud models may be used, so that public, private, hybrid, and 
community (NIST 2011) cloud data storages are possible. Also, IMPReSS does not adopt a “one size 

fits all” approach for data storage, making it possible for different database models to be used for 
different middleware modules. Modules in the UI component of the IMPReSS Platform have 

counterparts in the Middleware component and they communicate through the Middleware API. 
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Figure 5 - IMPReSS Partner’s View 

Both UI and Middleware are comprised of four main modules, which are related to each other: 

 Context UI: A graphical tool aimed at managing context information, for allowing Developers 

to specify which features of context-awareness they need in their applications, ranging from 

template specification for smart entities and situations to context modeling and rule 

authoring. In other words, the Context UI exposes to Developers all context-related features 
of the IMPReSS Platform that they choose to add into their applications. Based on the model 

defined by Developers, this tool communicates with the background context manager 
module that implements the templates, rules, sensor and data fusion, context model, and 

the context-reasoning engine. Developers must also select and developed particular 

configuration options to be disclosed to Integrators and even Recipients. The Context UI is 
presented in Deliverable D6.5 (Kamienski et. al 2015b) 

 Data UI: A graphical tool aimed at allowing Developers to enter the needed configuration for 

the data analysis and support module that uses supervised and unsupervised learning for 
helping IMPReSS applications to make more informed decisions, based not only on real time 

but also historic data. The Data GUI will configure and interact to the Data Manager module 
that runs in the IMPReSS Middleware. 

 Resource UI: A graphical tool aimed at allowing Developers to specify all particular 

information needed for the mixed criticality resource management, which may be performed 

through parameterization or through a specially designed applications classification 
language. This language is used for describing the run-time requirements of an application 

in terms of its priority, device access scheme (exclusive or shared) and security. The 
Resource GUI outputs this information formally as an application criticality description that 

will be understood by the Resource Manager in the IMPReSS Middleware. 

 Communication UI: A graphical tool for allowing Developers to specify all information 

needed for dealing with communication in the IMPReSS Middleware. This tool is called 
integration support tool in the IMPReSS DoW and it will provide a collection of templates for 

different technologies. 

The IMPReSS Platform Middleware modules offer background services for their UI counterparts: 

 Context Manager: This module encompasses all background software components that a 

typical context-aware middleware offers to its users (Perera 2013), such as context 
templates, context models, context reasoning engine, and algorithms for sensor and data 

fusion. It also interacts with the Storage Manager to data storage and retrieval. Resources 

might be accessed directly or preferentially through the Resource and Communication 
Managers. Section 6.1 summarizes the main features of the Context Manager. 
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 Data Manager: This module provides all software components needed to implement a data 

and knowledge repository as well as data mining and machine learning algorithms to be 
used by IMPReSS applications. The machine learning algorithms used to process context-

aware information for energy efficiency systems are within the Data Manager. Section 6.2 

summarizes the main features of the Data Manager. 

 Resource Manager: This module contains all software components needed for managing 

mixed-criticality resources, such as device and subsystem resource management, resource 

management and access scheduler, and security features for resource-constrained 
subsystems. When it comes to implementation, the architecture of both Resource Manager 

and Communication Manager are tightly related and are presented together in section 6.3. 

 Communication Manager: This module implements all communication features of the 

IMPReSS Platform, such as resource and service discovery and communication and networks 
management. Also, it plays the role of a proxy (an intermediate module) for the other 

modules to the Resource Adaptation Interface (RAI). When it comes to implementation, the 
architecture of both Resource Manager and Communication Manager are tightly related and 

are presented together in section 6.3. Also, the Resource Adaptation Interface (RAI) is 

considered an integral part of the Communication Manager. 

All UI and Middleware modules, as well as the IMPReSS Middleware API and the Resource 

Adaptation Interface, will be further specified and refined during the project and documented in the 
final architecture report. 

5.4 IMPReSS Developer’s View 

Figure 6 depicts the IMPReSS Developer’s View, highlighting the UI modules (Context, Data, 
Resource and Communication) described in section 5.3. Developers have access to the graphical 

interface and they can also add new modules and integrate them to the application connecting them 
through the Middleware API. The internal details of the IMPReSS Middleware are hidden from 

Developers, since the Middleware API provides everything they need. Developers are also aware of 

the existence of external storage sources and physical and digital resources that must be 
programmed and tested to work with the Application. 

Developers may play the role of Integrators and in the case they have the same view presented in 
section 5.5.  

IMPReSS Middleware 

IMPReSS	MIDDLEWARE	API	

Physical	and	Digital	Resources	

P
la

tf
o
rm

 

Data		
UI	

Resource		
UI	

Context		
UI	

Communica on		
UI	

 

Figure 6 - IMPReSS Developer’s View 

5.5 IMPReSS Integrator’s View 

IMPReSS Integrator’s View is depicted in Figure 7. Integrators are aware of the Application, which is 
made available to them by Developers using the IMPReSS UI. During the development of the 
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application, Developers provided special interfaces for Integrators to be able to configure, install and 

deploy it. Integrators are aware of the Application and Middleware, since they have to install them 
and the procedures may be more or less automated for different Applications. Integrators are also 

aware of the existence of external storage sources and physical and digital resources because they 
need to interconnect them to the Application and to the Middleware through configuration 

parameters. 

Integrators may play the role of Developers, using the IMPReSS Platform to develop their own 

Applications. For that particular case, their view is the normal Developer’s View presented in section 

5.4. Alternatively, Integrators may be software developers using different non-IMPReSS-UI-based 
platforms and they can connect them to the application through the Middleware API. Examples of 

non-IMPReSS-UI-based platforms are third-party software commonly used by Integrators or they 
own in-house developed software. By doing that they are able to enhance an IMPReSS Application 

with features that have not being considered by both Partners and Developers. 

Integrators access IMPReSS Applications through specially designed interfaces, such as Web or apps 
for smartphones and tablets. Their non-IMPReSS-UI-based applications they access through their 

own development tools. 

Application 
(IMPReSS-UI-based) 

IMPReSS Middleware 

IMPReSS	MIDDLEWARE	API	

Physical	and	Digital	Resources	

Application 
(non-IMPReSS-UI-based) 

 

Figure 7 - IMPReSS Integrator’s View 

5.6 IMPReSS Recipient’s View 

The IMPReSS Recipient’s View is depicted in Figure 8. Recipients have a more limited view of an 

IMPReSS Application, which is called Solution after being deployed and eventually enhanced and 
customized by Integrators. Recipients are the end-users or final beneficiaries of the technologies 

developed by the IMPReSS project. They live, work, or have fun in physical spaces where energy 

efficiency is considered of paramount importance and thus are immersed in pervasive environments, 
where sensors and actuators are spread all over the place (physical resources). 
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Figure 8 - IMPReSS Recipient’s View 
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6. IMPReSS Middleware Components 

This section provides some additional level of details on the four middleware components. 
Interested readers are recommended to obtain the specific deliverables of each component, 

references through the text. 

6.1 Context Manager 

The IMPReSS Context Manager that provides context templates, modeling, reasoning, and 

algorithms for sensor data fusion. The design of the Context Manager and its implementation are 
presented in Deliverable D6.3 (Kamienski et. al 2014a) and Deliverable D6.4 (Kamienski et. al 

2015a) respectively. 

6.1.1 Design Choices 

An extensive research in the state of the art in context modelling and reasoning has been 

undertaken in order to understand the options, choices, tradeoffs, and challenges in context 
modelling and reasoning better. Based on these findings, two main design choices have been made: 

 Object-oriented context modelling: the use of the same paradigm used for modelling and 

developing systems in the last decades strongly influenced that choice. Moreover, there 

exists already very mature underlying technology such as persistence storage and rule 
engines that are designed based on object-oriented approach.  

 Rule-based context reasoning: given that object-oriented context modelling was chosen, the 

natural choice is to use rule-based reasoning, which is commonly used and offers different 
existing tools that integrate with object-oriented programming languages. However, other 

approaches for context reasoning may be incorporated later in case the use of rule-based 
reasoning proofs itself to be insufficient to obtain reasonable results. 

6.1.2 Entities and Templates 

IMPReSS aims at providing reusable templates for energy efficiency context management, making it 
easier and faster to add context-awareness features in building automation applications. The design 

of context templates is characterized by context entities, their relationships, and their attributes. 
Through an extensive requirements analysis, we identified seven entities that commonly exist in 

typical context-aware building automation applications: Subject (people), Resource 

(sensors/actuators), Place (rooms, floors), Fusion (data aggregation), Rule (decisions), Action 
(commands to actuators) and Activity (schedule).  

6.1.3 Context Manager Architecture 

Figure 9 depicts the Context Manager Architecture and its relationships with other components of 

IMPReSS. The IMPReSS Context Manager modules are: 

 Context API: part of the IMPReSS Middleware API, it exposes a REST interface, allowing 

other modules to interact with the Context Manager. Through the Context API entity 

templates are configured in the Context Storage. 

 Context Storage: responsible for storage and retrieval of context entity templates, via the 

Context API. Any RDBMS with an Object-Relational Mapping (ORM) system may be used. 
We used EclipseLink as ORM, together with PostgreSQL RDBMS. 

 Reasoner: The Context Reasoner infers logical consequences from a set of facts. The 

Reasoner is invoked by the Fuser and reads entities from the Context Storage. When it is 
invoked with a set or parameters it searches the entire set of rules for a match, i.e., a rule 

that matches the parameters. In case of rule conflicts, the Reasoner must select only one 

rule to be executed based on some resolution mechanism. As a result of firing a rule, one or 
more actions are performed and they usually refer to changing the configuration of devices 

or equipments for dynamically adapting behavior, e.g. turning off an elevator or lowering 
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the temperature of an air conditioner. The Reasoner performs this task by sending 

command messages to actuators through the Communication Proxy. Our implementation is 
based on Drools1 (Expert and Workbench). 

 Fuser: responsible for data fusion, which means the use of a set of techniques for combining 

data from multiple sources or computing statistics. The Fuser is directly connected to the 
Communication Proxy for receiving real time sensor data and when fusion criteria are met it 

activates the Reasoner and stores the fused results. Also, fused data may become a virtual 
sensor and be redirected back to the Fuser. Multiple fusion criteria may be active 

concurrently and therefore this module plays a key role for the performance of the Context 

Manager. In our implementation, fusion is performed by Esper2, which can perform Complex 
Event Processing CEP) by filtering, analyzing, and fusing events in various ways, 

configurable through an SQL-like language. 

 Scheduler: Manages the agenda for prescheduled events (such as classes in a university) 

and fires the Reasoner for taking appropriate actions. 

 Communication Proxy: encapsulates communication with resources, interfacing with the 

Communication Manager and with a MQTT3 broker. 

 Local Data Storage: implements internal data storage, for sensor data, fused data and event 

logging. 

														Fuser 						Reasoner 

Local	Data	
Storage	

Context API 

Scheduler 

Context Storage 

Communica on	Proxy	

Place Subject 

Resource Fusion 

Rule Action 

Activity 

 

Figure 9 - IMPReSS Context Manager 

6.2 Data Manager 

The Data Manager consists of a set of technologies responsible for managing and storing data, as 

well data mining and machine learning algorithms. These technologies are based on a NoSQL 
database, more specifically, a graph-based one. 

                                           
1 www.drools.org 
2 www.espertech.com 
3 mqtt.org 
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6.2.1 Data Model and Storage 

Under the IMPReSS platform, the data semantics and analytics are fundamental features needed to 
support the decision making process. Multi sensor data fusion provides a means to fuse raw data 

into meaningful higher-level information for the users. Moreover, the recognition of the modeled 
situations requires understanding the technicalities of each sensor, signal processing and sensor 

fusion techniques to combine readings from different sensors. In such scenario, where the 
information about the interconnectivity or the topology of the data is more important than, or as 

important as, the data itself, the data modelling based on graph has several advantages.  

First, graphs provide a natural and flexible way to represent information about real world (i.e. real 
world objects are vertexes and relations between different objects are edges). Second, typical graph 

databases provide built-in structures (i.e. nodes and edges) to represent graphs. Whereas in other 
databases, relationships between entities in the data model would have to be handled by the 

modeler at the model level. Or in other words, new tables or columns, at least in the SQL case, 

would have to be maintained only for the sake of being used as query indirection stages that point 
to other entities, probably via foreign keys. 

For these reasons, the data modelling adopted in the project is based on a property graph 
representation, implemented by most well-known NoSQL graph databases (i.e. Titan, Neo4J and 

OrientDB.). In the realm of graphs' morphism, a property graph is a vertex/edge-labeled/attributed, 
directed, multi-graph. The data modelling is based on sensor readings arranged in a certain physical 

environment. The setting may have an infinite number of areas, which in turn may or may not 

embody other areas within it. Each area may contain an indefinite number of devices that belong to 
a sensor network. These devices will perform several measurements of the various parameters 

throughout the day, while it is necessary to store a history of such readings possibly for an indefinite 
time, depending on application requirements. A generic description of the IMPReSS scenario is 

shown in Figure 10. 

 

Figure 10 - IMPReSS Data Manager: Data Model for the Data, Policy and Knowledge 

Graph databases are perhaps the most popular graph computing technology. They provide 

transactional semantics such as ACID, which is typical of local databases, and eventual consistency, 

which is typical of distributed databases. Different from in-memory graph toolkits, graph databases 
use the disk to store the graph data. On sufficiently powerful machines, local graph databases can 
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support a couple billion edges while distributed systems can handle hundreds of billions of edges. 

However most distributed graph-based NoSQL databases, like Neo4j, does not provide the means 
for global graph algorithms to be performed within a reasonable milliseconds time scale, in a 

hundreds of billions of edges scenario. And since WP5 tasks leverage heavily in the data processing 
for the machine learning and data fusion techniques, be able to have a continuous feedback loop 

that works almost in quasi real time and have a global view of the current and past state of the 
system, mainly due to global graph algorithms, is invaluable. Considering this practical concern, we 

adopt the Titan4 open implementation as distributed graph-based NoSQL database. The Data 

Manager Data Model and graph-based implementation are presented in Deliverable D5.1.2 (Gomes 
et. al 2015). 

6.2.2 Data Analysis 

Machine Learning algorithms are used to solve tasks for which the design of software using 

traditional programming techniques is difficult. Machine failures prediction, filter for electronic mail 

messages and user behaviour identification are examples of these tasks. Several different machine 
learning algorithms have been proposed in the literature. These algorithms may be divided into 

three categories: regression, classification and clustering algorithms. This categorization takes into 
account whether or not one of the following aspects is considered: use of labeled training examples, 

and real or discrete outputs. Machine Learning algorithms for IMPReSS are presented in Deliverable 
D5.3 (Souto et. al 2015). 

In clustering, samples in the training set are not labeled or classified. The objective is to form 

clusters or natural groupings of the input samples. Cluster analysis can be used to provide insight in 
the distribution of data, as a pre-processing level for other algorithms, etc. According to the 

literature, different clustering algorithms lead to different results.  

On the other hand, labeled training samples are available in classification and regression problems. 

The objective of these algorithms is to find the best functional relationship between input and 

output, called target or decision function. In regression problems, the outputs are continuous values 
while the outputs are discrete values in classification problems. Again, several regression and 

classification algorithms are available in the literature. These methods may achieve different 
performances when evaluated in different problems.   

Based on this context, the algorithms provided in the web application are divided into regression, 
clustering and classification algorithms. It is important to mention that the algorithms were 

developed using scikit-learn5 - an open source and commercially usable library based on Python. 

Another important characteristic is the fact that scikit-learn is broadly used by companies like 
Evernote, Spotify and DataRobot. Moreover, this library has a large open source community support 

and documentation. In the next section, each algorithm used at the application will be explained.  

6.3 Resource Manager and Communication Manager 

When it comes to implementation, given the nature of mixed criticality systems implemented by the 

Resource Manager, its implementation is very closely related to the Communication Manager. 
Therefore, their features are presented together here, according to Deliverable 4.3 (Kiljander et. al 

2015). 

6.3.1 Mixed Criticality Resource Management Architecture 

The mixed criticality resource management architecture (with some other closely related IMPReSS 

components) is depicted in the Figure 11. It consists of following entities: applications, IoT 
resources, Global Resource Manager (GRM), Local Resource Manager (LRM) and the Development & 

Management Tools. These components work in co-operation with the other IMPReSS modules in 

order to provide mixed criticality resource management functionality at the application and device 

                                           
4 http://thinkaurelius.github.io/titan/ 
5 http://scikit-learn.org/ 
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levels. In addition to these component an important part of the mixed criticality resource 

management approach are the application and resource descriptions.  

 

Figure 11 - Mixed criticality resource management architecture 

Applications are software processes that provide a certain service for the user by utilizing IoT 

resources (i.e., sensors and actuators) available in the given IoT environment. The IMPReSS SDP 
provides two options for the developers. The preferred way to create applications is to use the 

IMPReSS UI modules. However, it is also possible to write applications manually in any programming 
language. In either case the application needs to utilize the mixed criticality middleware in order to 

be able to access the IoT resources provide by the IMPReSS platform. 

In the IMPReSS architecture the component responsible for virtualizing the resources and exposing 
the resource functionality for applications is called IoTResource. There is one IoTResource for each 

physical resource in the IoT system. The IoTResource consists of LRM and Resource Adaptation 
Interface (RAI) components of which the LRM is the one responsible for mixed criticality 

management aspects. The RAI component is described in more detail in Deliverable D3.1 (Ferrera 

et. al 2014). 

6.3.2 Global Resource Manager 

At the system level, mixed criticality resource management is executed by the Global Resource 
Manager. Its main goal is to optimize the behaviour of the IoT system by providing resource 

management functionality at application and device levels. At the application-level the GRM 
discovers suitable resources for each application and controls which applications can access which 

resources in order to make sure that the behaviour of more critical applications is not compromised. 
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At the device-level the role of the GRM is to make sure that more critical devices are supplied with 

power in the case of power shutdown. The device-level resource manager is based on the 
assumption that in the case of a power outage the devices are supplied with power from backup a 

battery or a generator. Whenever the available energy in the supply drops below a certain limit the 
application-level resource manager turns of devices with a criticality level below a predefined 

threshold. 

The Global Resource Manager internal architecture is depicted in Figure 12. It consists of three 

functional software components, called Application-level Resource Manager, Device-level Resource 

Manager and System Knowledge Base, and three interface modules called Resource Catalogue 
Interface, Global Resource Manager Protocol and System Knowledge Base Protocol. 

 

Figure 12 - Global Resource Manager internal software architecture. 

6.3.3 Local Resource Manager 

At local level the resource management is performed by the LRM. The role of the LRM is twofold. At 
the application-level it 1) controls that only applications that are authorised by the GRM access the 

given resources and 2) schedules that request send by the applications (shared access scheme) so 
that the most critical applications are served first. At the device-level it provides an interface for 

Global Resource Manager to control which devices are provided with power in the case of a power 
outage. 

The LRM is implemented with Java programming language using Jersey6 RESTful Web Services 

framework. The internal architecture of the IoTResource component (including the LRM) is 
presented in the Figure 13. 

                                           
6 https://jersey.java.net/ 
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Figure 13 - IoTResource architecture. 
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7. Scenario-based Architecture Instantiation 

The IMPReSS Software Architecture, as depicted by the Partners’ view in Figure 5, does not 
determine any particular way wherein its components can interact. Given that IMPReSS Components 

provide broad generic services, they can be interconnected in different ways through their REST 
APIs. In order to be able to see how the components can interact, a specific scenario is needed, 

which here are defined as two different applications: Energy Saver and Alarm System. 

7.1 Energy Saver and Alarm System Scenarios 

In the beginning of the scenario there are two applications (Energy saver and Alarm system) and 

three types of IoT Resources (Presence sensor, Lights, Smart plugs) deployed into the system. The 

first phase of the scenario is to show how the Energy Saver application works. The lights are 
switched off when there is no class scheduled. When there is a class, presence sensors detect if a 

row of seats in the classroom is empty. In the empty areas of the classroom, the lights are 
automatically switched off.  

Alice wonders how much energy will be consumed by the lights in future. For this, a pre-defined 

model for machine learning has been fed with relevant data, using the Data Manager. Alice can now 
request forecasts about energy consumption in the room in the IoT Catalogue, which gets the data 

from the Data Analysis tools. 

An important limitation is that presence detection sensors often gives false positives (empirical 

evaluation), so that the second phase of the scenario demonstrates how new IoT Resources can be 
easily deployed to enhance existing systems. No modifications need to be made to the existing 

applications because of the IMPReSS platform. So, Bob, an integrator, decides to add Kinects to 

improve presence detection. Bob searches for a driver available for the Kinects (this one has been 
already developed by Alice or another developer and inserted in the repository of the ones available) 

and then he uses it for the integration. The driver is installed at runtime in his RAI instance, using 
the configuration tool. Finally, the IoT Resource Catalogue, interacting with the Local Resource 

Manager, will discover the IoT resource, abstracted using the RAI. By checking the Kinect is 

appearing in the Resource Catalogue, Bob verifies that the driver installation succeeded. Bob opens 
the Context Manager, through the Context Modelling Tool (Context UI), and notices that the context 

"row occupied" is defined through interpretation of the corresponding presence sensor. He extends 
this context so that is considers a fusion of values from the existing presence sensors and the 

Kinects. 

As part of the configuration phase the Kinects must be added to the mixed criticality management, 

which determines which power consumers shall be switched off in case of a power outage. For this, 

all managed devices are connected to switchable smart plugs. Bob opens the Mixed Criticality 
Resource Manager and sees that so far only an emergency light and two servers have assigned high 

priority, the other power consumers in the classroom have low priority. Alice assigns the Kinects also 
low priority. Afterwards, she performs a few tests for the use case again and empirically discovers 

that there are less false positives. She uses the Context Manager to analyze the false positives. 

Using the context graph allows her to easily track the context and find out why at a certain point the 
light was switched off. 

In the third phase of the scenario, mixed criticality resource management features are emphasized. 
First application level mixed criticality is demonstrated. It is shown how the Alarm system takes 

control of the lights whenever alarm signal is received from sensor (or simulated with an alarm 

button). When alarm ends the alarm application releases the lights and the control is granted to the 
energy saver application. Then device level mixed criticality is illustrated by a power outage. The 

Mixed Criticality Manager switches off the low priority devices immediately. After some time when 
the fuel has decreased to a certain level, the Mixed Criticality Manager checks again if the power 

outage still occurs. If yes, it switches off the next class of devices. After the power outage has 
ended, the Mixed Criticality Manager makes sure to switch on all devices after the grid has 

stabilized. Higher priority devices are switched on before lower priority ones. The priority of devices 
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can be easily changed so that it can be adjusted for the needs of the different departments. This is 

explored in the Mixed Criticality GUI. 

7.2 Interaction of Architectural Components 

Figure 14 depicts how the components of the IMPReSS Architecture can be interconnected for 

implementing the Energy Saver and Alarm System Scenario. IMPReSS components are represented 
in blue, whereas customized components are represented in grey. It can be observed that not 

necessarily all sub-components are represented in that picture, in order to make it cleaner and to be 
easier understood by the reader. For example, it is mentioned that Bob uses the Context Manager 

through the Context UI (Modelling Tool), even though UI components are not represented in the 
picture. The Energy Saver Application represents a customization of the Context UI for that 

particular purpose.  
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Figure 14 - IMPReSS Architecture – Instantiation for the Energy Saver and Alarm Scenarios 
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8. Conclusion 

This report describes the thoughts and views that lead to the design of the second and final version 
of the IMPReSS Software Architecture. This initial architecture, described in the DoW, and the initial 

IMPReSS software architecture, serving as a comprehensive and unique view of the big picture, 
played a key role in maintaining partners aware of the IMPReSS SDP. Integration was a key concern 

when adopting a highly distributed software development process and that was the approach 

followed in the IMPReSS project.  

The design of this final version of the IMPReSS Software Architecture involved an extensive learning 

process about the existing knowledge held by the partners and expressed in the original IMPReSS 
platform, which was presented in the project proposal. Also, it required certain control of the 

evolution of the architecture and its approaches since the initial architecture has been published. 
This architecture has been used for supporting the design of scenarios, prototype implementations, 

demos, reviews, troubleshooting and performance analysis studies. 
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