

(FP7 614100)

D4.1.2 Final application classification language and tool

05 January 2015 – Version 1.0

Published by the IMPReSS Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme and
the Conselho Nacional de Desenvolvimento Científico e Tecnológico

Objective ICT-2013.10.2 EU-Brazil research and development Cooperation

http://www.cnpq.br/index.htm

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 2 of 24 Submission date:

Document control page

Document file: D4 1 2 Final application classification language and tool.docx

Document version: 1.0
Document owner: Ferry Pramudianto (Fraunhofer FIT)

Work package: WP4. Mixed Criticality Resource Management

Task: Task 4.1 Application classification language and tool
Deliverable type: P

Document status: approved by the document owner for internal review
 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Ferry Pramudianto 1/11/2014 ToC and Mixed-Critical Application
Scenario.

0.2 Jussi Kiljander 30/11/2014 Application Descriptions.

0.3 Nishananth Baskaran 20/12/2014 Implementation of the application
description generator added.

1.0 Ferry Pramudianto 5/1/2015 Improved based on the review

comments.

Internal review history:

Reviewed by Date Summary of comments

Enrico Ferrera (ISMB) 23/12/2014 Accepted with minor comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the IMPReSS Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The Members of the IMPReSS Consortium shall not be held liable for errors contained herein
or direct, indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of
the information contained therein.

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 3 of 24 Submission date:

Index:

Contents
1. Executive summary .. Error! Bookmark not defined.

2. Introduction .. 4

2.1 Background ... 4
2.2 Purpose, context and scope of this deliverable .. 5

3. Mixed-Critical Application Scenario ... 6

3.1 Opera House Scenario ... 6
3.2 University Campus Scenario ... 7

4. Application Descriptions .. 8

4.1 Development and deployment phase representation 8
4.2 Runtime representation ... 9

5. Application Description Generator ... 12

5.1 Use Cases .. 12
5.2 User Interface Design .. 13
5.3 Architecture & Implementation .. 14
5.4 The initial implementation .. 16
5.5 Examples of using the generator.. 17

5.5.1 Deployment .. 19

6. Conclusion ... 21

7. References .. 22

Appendix A: Resource Management ontology ... 23

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 4 of 24 Submission date:

1. Introduction

1.1 Background

In IMPReSS, we assume that sensors and actuators, which are referred as IoT resources in the
remainder of this deliverable, could be developed separately by different developers or organizations
than the software that access them. Moreover, in IoT, sensor and actuator resources are often
accessed concurrently by different software. Without a proper resource management, the
performance of the whole system maybe degrading since the sensor and actuator resources have a
limited capacity to serve number of applications at the same time. This effect may not be acceptable
for some highly critical applications that must be served near real-time. The mixed critical resource
management in IMPReSS aims at providing a generic solution for deploying mixed critical
applications so that they run as desired. The mixed criticality framework in IMPReSS should be able
to balance the load to the IoT resources and serve the more critical applications first before the
others.

Figure 1. Development, deployment, and runtime management of mixed criticality applications.

As described in the D4.1.1, the mixed-critical application lifecycle within the IMPReSS platform
consists of three phases including the development, deployment, and runtime. IMPReSS provides
tools that help the development, deployment, and configuration of mixed criticality IoT applications.

At runtime, the resource management consists of two components, the global resource manager
(GRM), and local resource manager (LRM). GRM is intended to solve conflicts between applications
that either request exclusive access to a same resource or request access to different resources that
might interfere with each other in the real word (e.g. lights, heating systems, etc.). Second, the
GRM is also useful to keep the load between similar resources in balance in order to prevent
bottlenecks and keep the performance of the whole IoT system is as optimal as possible.

The LRM functions as the final line of defense for the resources that are represented by software
proxies. LRM guarantees that applications with higher criticality level are served first before the less
critical applications.

To implement this framework, the applications and the available resources must be decoupled and
dynamically coupled according to the decision made by the GRM and LRM. Secondly, the resources
and the applications must be annotated with meta-information that allows the GRM and LRM to
evaluate the critical levels of the applications as well as the appropriate resources that can be
assigned to the applications.

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 5 of 24 Submission date:

1.2 Purpose, context and scope of this deliverable

This deliverable focuses on the development part of the resource management framework. In the
D4.1.1, we presented the possible meta-information that can be used by the GRM to assign the
resources to an application. In this deliverable, we present the further development of the
application description concept and its implementation.

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 6 of 24 Submission date:

2. Mixed-Critical Application Scenario

Within the requirement elicitation process, we tried to identify use cases, in which mixed-critical IoT
applications will likely be deployed. In this regards, we had to reimagine how building management
systems work. In the requirement workshop, we envisioned that building management systems will
be an open IoT systems, which decouple resources from the applications that access them. The
system could be extended by adding apps that access resources, similar to what we could see on
the computing and smartphone platforms. The main advantage of this approach is, the functionality
of the system could be extended by third party developers. However, opening up the control to
devices installed in the building requires a proper management in order to guarantee that the whole
system could function well. The IMPReSS resource manager tries to provide a general solution to
coordinate the access to the resources in the building to keep the system working in harmony. This
includes prioritizing access to the IoT resources (sensors, actuators, and network) depending on the
criticality of the applications. In addition, it is also useful to balance the load of the IoT resources.

2.1 Opera House Scenario

The opera house scenario consists of a building management system with different applications
accessing the sensors and actuators for the lighting, air conditioner, ventilator, and displays
including public displays as well as mobile devices such as tablet.

We identified the following use cases related to mixed-criticality:

1. Several applications are allowed to control the lighting and air conditioner in the dressing rooms.
Currently, we foresee three applications. First, an application is used by the facility manager to
schedule the usage of lighting and air conditioner (AC) to guarantee that they are switched off
outside the operational hours of the building. Second, a mobile application is used by the
employee of the opera house. The mobile app may be given a higher priority for controlling
devices at his or her own workspace, e.g., they could override the schedule for the lighting, and
AC based on their personal habits.

Moreover, further applications to control the ventilation, and air conditioner should be deployed
for increasing the air quality in the building, reducing the energy consumptions, preserving the
historical painting, as well as user comfort level. These could be different applications, which
could have contradicting policies for controlling the devices. For instance, in the normal
condition, to save energy, the cooled air inside the building should be kept by closing the
ventilation fans. However, another application could override this policy when the CO2 level in
the building is too high.

2. The second use case is ambient notification. Ambient notification is implanted with Philips hue
bulbs, which can change its color and intensity. The combination of the two could be used to
notify the artist in the dressing rooms about important events at the main stage so that they
could manager their timing better. For instance, if they have to go to the main stage in five
minutes, the light intensity is increased and the color becomes warmer.

In addition, the lights could also be used by other applications to notify the users about other
events, e.g., if there are hazards such as a fire, too much CO2 in the building, or humidity level
could damage the painting. Since several applications are changing the color and intensity of the
lights, each applications must have different priority. For instance, the notification for hazardous
condition should have a higher priority than the other apps. The fire App may use the Philips
hue bulbs in the corridors to lead the users to the nearest exit.

3. The third use case is, environmental condition monitoring using wireless thermometer, humidity,
CO2, and presence detectors. To save the battery of the wireless sensors, the public display
application and the tablet application may only be allowed to poll the data every 15 minutes.
However, in case of a fire, the sensors could be repurposed by another application from the fire
department to create a heat map and detect if there are people in the rooms that need to be

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 7 of 24 Submission date:

saved by the firefighters. This application must have an exclusive right to poll the sensors in a
very rapid interval of time to monitor the spread of the fire in real time.

2.2 University Campus Scenario

The university campus scenario consists of a building management system with a broader scope
than the opera house scenario. UFPE operates several data centers and computing labs that have
PCs turned on the whole day. Applying an energy management system in the campus will allow a
great reduction of the energy consumptions as well as managing the devices centrally.

In addition to the similar scenario to the opera house that can be applied at UFPE, We identified the
following use cases related to mixed-criticality:

1. UFPE campus now operates several uninterruptible power supply (UPS) for the server. Although,
the capacity of the battery is increased regularly, the increase is not proportional with the
increase of the server racks. Therefore, when there is an outage, the UPS cannot power the
whole data center as planned anymore. As a solution, the servers must be prioritized and shut
down when necessary in order to guarantee the more critical servers get fewer interruptions.
Therefore, each server should host an agent software that request access to the battery through
the resource manager. When the battery level become more critical, the access to the battery
should be cancelled and the server should shut itself down.

2. Another use case is repurposing the lighting, displays (projectors, public screens), and speakers
in the classrooms for different kind of notifications by different apps, similar to the
entertainment system in the passenger flights. An application could use these devises to alert
the users towards hazards situation such as fire, natural disasters. Using different modality will
increase the awareness of the users in the building.

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 8 of 24 Submission date:

3. Application Descriptions

There are two representation formats for applications in the mixed-criticality resource management
approach for Internet of Things. In development and deployment phase, JSON-serialised representation
(presented in the section 3) for applications is used. This description is generated by the Application
Description Generator described in more detail in the chapter 4. At runtime, applications representations are
stored inside the System Knowledge Base as part of the overall resource management ontology. This
ontology (presented in the section 3.1) is used for monitoring the system state during runtime resource
management activities. A Turtle syntax representation for the ontology is presented in the Appendix A.

3.1 Development and deployment phase representation

The application descriptions consist of following parameters: application ID, human-readable description,
criticality level, security clearance level and a list of resource specifications. Each resource specification in
turn consists of resource specification ID, access scheme, significance, reliability and query parts. The type
and content for these parameters are described in more detail in the following listing.

 Application ID : [string] Unique identifier for each application instance.

Application developer defines a unique ID for the application, which is combined with the instance
ID, generated by the Global Resource Manager in the deployment phase to form the actual
application ID.

 Description : [string] Human-readable description of the application.

Description of the application is created by the application developer in order to help system
integrator and recipient understanding the purpose of the application.

 Application criticality : [number] Positive integer value that defines how important the application
is the IoT system. Criticality of the application is initially defined by the application developer
depending on the order how the access to the resources should be prioritized. During deployment
phase, it can be modified by the system integrator if necessary. It is also possible to update the
application criticality at runtime if needed.

 Security clearance: [string] Specifies how confidential the data should be delivered by the IoT
resources to the applications, which could be used by the developers to decide on the data
encryption level between the IoT resources and the applications. Possible values include: Untrusted,
Low, Medium, High. Security clearance is defined in the deployment phase by the system integrator,
and can be updated at runtime if necessary.

 Resources : [array] List of specifications for resources required by the app. The parameters for
single resource specification are presented below. All the parameters are defined in the application
development phase by the application developer. In deployment phase the query parameter is
updated with property that associates the application to resources in specific environment.

o Resource specification ID : [string] Unique identifier (inside one application description)
for resource specification.

o Access scheme : [string] Defines the access policy for the resource. Possible values are
Shared or Exclusive.

o Significance : [string] Defines the importance of the resource for the given application.
Possible values are Obligatory and Useful.

o Reliability : [string] Specifies the reliability requirement for the resource (the more critical
actions are based on the resource the more reliable the resource needs to be). Possible
values include: Low, Medium, and High.

o Query : [string] SPARQL SELECT query that specifies the resource of interest. This query is
used to find suitable resources for the app from the System Knowledge Base. Name
“resource” should be used for the variable to be bound with resource URI. The resource
management ontology represented in the section 3.2 provides the basic vocabulary for

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 9 of 24 Submission date:

defining the query part. The idea is that domain specific ontologies used to describe
resources in higher detail can be used when necessary.

An example of the application description in presented in the Figure 2. The application depicted in the figure
controls lights in a dressing room based on the room occupancy (or the time of the day). One instance of
this application is deployed into each dressing room in the Teatro Amazonas Opera House. The application
has two resource specifications: one for the lighting system and one for the occupancy sensor. The lighting
system is a mandatory resource with exclusive access scheme. Since the application is able to control
lighting based on the time of the day the significance of the occupancy sensor resource is only “Useful”. The
access to the occupancy sensor resource is shared.

Figure 2. Application description example.

3.2 Runtime representation

At system runtime application descriptions are stored into the system knowledge base as part of the
resource management ontology for mixed-criticality resource management. A simplified view (only classes
and object properties are depicted) of this ontology is presented in the Figure 2.

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 10 of 24 Submission date:

Figure 3. Simplified view of the resource management ontology.

The ontology has three main concepts: ObjectOfInterest, IoTresource and Application. The ObjectOfInterest
class is a subclass of dul:PhysicalObject (Gangemi 2007) and ssn:FeatureOfInterest Compton et al. 2012)
classes. It represents all kinds of physical world objects (e.g. rooms, items, people, etc.) that are relevant
for the given IoT system. The idea is that domain specific ontologies are utilised and created for modelling
the properties of object of interest in more detail when necessary.

The IoTresource class represents a certain sensing or actuating capability of a device. The link between the
IoTresource instance and the ObjectOfInterest instance it is attached to is represented with associatedTo
object property. An IoTresource instance can either monitor or modify certain properties of the
ObjectOfInterest; the link between the IoTresource instance and the ssn:Property instance are modelled
with monitors and actsOn object properties. In addition to these object properties, the IoTresource has data
properties for representing the reliability level it provides and the security level required to access the
resource.

The Application class represents a business logic that utilises device capabilities in order to provide certain
functionality for the system (e.g. turn on the lights when person enters a room). The resources an
application needs to access are represented as instances of the ResourceSpecification class. Each resource
specification has several data properties that define the functional specification, access scheme, significance
and reliability requirement for the resource. The relation between suitable IoT resources (one that matches
the functional specification) and the specification are represented with matches object property. The relation
between an application and IoT resource that is currently reserved for the application is modelled with uses
object property. In addition to these object properties, the Application class instances are modeled with
rm:criticality and rm:securityClearance data properties.

To illustrate the ontology in practise, an example of runtime content of the System Knowledge Base (SKB) is
depicted in the Figure 4. In this example the RDF graph inside the SKB consist of an object of interest,
application and two IoT resources. The object of interest is a dressing room in the Opera House (Theatro
Amazonas). The application is the same automatic light control application presented in the section 3.1. The
IoT resources deployed into the room are Philips Hue lighting system and occupancy sensor. For simplicity
reasons the devices domain specific properties of the object of interest or the devices exposed by the IoT
resources are not illustrated in the figure.

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 11 of 24 Submission date:

Figure 4. RDF graph illustrating object of interest, application and two IoT resources.

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 12 of 24 Submission date:

4. Application Description Generator

4.1 Use Cases

As elaborated in the introduction, to use the resource management capability for mixed critical

applications, the developers have to create an application description containing the application

resource requirements, which are used to register his application to the resource manager. The

resource manager then stores the information about the application in the knowledge base, and finds

the suitable resources that meet its needs. The application description must follow a format that can

be understood by the resource manager. As a proof of concept, the resource manager uses a JSON

formatted description, shown in Figure 2. JSON format was chosen since it can be compiled and

processed by devices with limited computing resources. The application description contains the basic

information about the application, required for the registration purpose. It also contains the SPARQL

query, which will be executed by the Global Resource Manager and the suitable resources for the

application is then found.

As we interviewed several developers, we found out that many developers are not familiar with

RDF and SPARQL. This makes crafting the application description manually by hand maybe error

prone. Consequently, we designed and created a graphical tool to support the developers creating the

application description. Using the tool, they only need to enter the required information through a

graphical user interface. The tool then generates the application description in a JSON formatted file

based on the input. The tool is implemented as an HTML5 based application which can be embedded

in the more professional IDE such as Eclipse or Visual Studio.

Figure 5. Use case diagram for the application description generator.

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 13 of 24 Submission date:

 We identified more detail use cases on how the developers interact with the application

description generator as the following:

1. The developer of the application has to enter the information of the application and resources

in a form provided by the tool.

2. The information of the application is converted from form data into JSON format.

3. If the application can only be bound to resources with specific IDs, the developers may enter

the unique ID of the resources or choose from a list of the available resources.

4. If the application requires resources with specific requirements, the developers may enter the

requirements as key-value pairs in the form. The list of the requirement is then converted from

into a SPARQL query, which is embedded in the JSON-formatted application description.

5. The developer is able to download the application description as a JSON file, which can be

deployed together with his application.

6. The developer is able to reset the form, remove specific resources, and remove the key-value

requirements.

4.2 User Interface Design

Based on the use cases, we created the user interface mockup that reflects the required features.

As shown in Figure 6, the developers could enter the criticality level of the application, add

resource requirements, which consist of more detail critical level, access scheme, and different

properties of the resources, e.g., latency, accuracy, etc. In the future, these properties will be filled

automatically depending on the ontology used by the resource manager, and the resource list will

be connected to the discovery manager which is done in WP3.

Resource List

Enter Text

Enter Text

Enter Text

Enter Text

Enter Text

Enter Text

Shared

PREFIX ex:<aasss#>
SELECT ?resource
WHERE {

Enter Text

Shared

192.168.0.1

App. ID

Application

Generate ID

Name

Desc.

Critical Lvl.

Security Lvl.

Resource Requirements

Res. Number

Critical Lvl.

Access Scheme

Generated Sparql

Add Resource Requirement

Add Property
Requirement

1

Latency Enter Text=

Property value

Latency Enter Text=

Property value

Res. Number

Critical Lvl.

Access Scheme

2

Download
Application
Description

Dynamic Resource

Dynamic Resource

Res. Global ID Find a Resource ID

192.0.1.1

192.0.1.2

192.0.1.3

Resource Name

Thermometer

Presence Sensor

Public Display

Location

XXX

YYY

ZZZ

Capabilities

Temp Sensing, Freq:

100Hz,….

YYY

ZZZ

onClick Select

Select ResourceonClick fill the text

Figure 6. Application description generator mockup.

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 14 of 24 Submission date:

4.3 Architecture & Implementation

Figure 7. Component Diagram

The architecture of the application description generator tool has six main modules including:

 Application ID Generator

 Generate SPARQL Query

 Generate Application Description

 Enabling/Disabling Module

 Download Application Description

 Reset the form

Application ID Generator Module:

Application ID for each new application is generated by this module. The application ID of

an application is alphanumeric and unique. The length of the ID is 32 bits. When the form is loaded

for the first time, the application ID is generated automatically and it is randomized. This is done by

a for loop and each time it chooses a random character from the list and the same is done for 32 time

in order to generate a 32 bit length application ID. The list contains numbers and alphabets. After the

developer finish generating the application description, the developer will press the reset button to

reset all the values of the form in order to generate the application description for the next application.

During this time, the application ID also will be reset. To get a new application ID, the developer has

to press get app id button. Now again, a new unique and random application ID with 32 bits will be

generated. By the end of the project, this module will be connected to the Global Resource Manager

to avoid duplicate IDs being generated.

Generate SPARQL Query Module:

One of the main objectives of this tool is to generate a SPARQL query from the form data.

This is achieved by the Generate SPARQL Query module. The developer is asked to fill a form which

has details about the resources. After entering the details, the developer clicks the SPARQL Generator

button to generate SPARQL query from the form data. This is done by analyzing the details which is

being entered by the developer. Before going to the analysis part, it is good to know about the

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 15 of 24 Submission date:

SPARQL structure. SPARQL consists of four parts. They are prefix declarations, query type,

projection and graph pattern. In this, prefix declarations are the short forms of the URIs we are going

to use. Query type indicates always SELECT, because we are going to fetch the result. Projection

will be always the result what we need and in this case it is the resource unique ID always. So, these

three parts will not change at all. The only part that will change is the graph pattern. Graph pattern in

simple words are the conditions given in a query to fetch the exact resource what the application

needs.

Here again, the developer is given a choice in determining the resource type. There are two

types of resource types. They are static and dynamic. Resource type is said to be static, when the

developer himself knows the resource unique ID which can be its IP address or its MAC address.

Resource type is said to be dynamic, when the developer does not know the resource’s exact unique

ID and instead he knows the properties of the resources. The properties such what is the purpose of

the resource, its location, and the like. When the developer selects the resource type as static, he is

just asked to enter the unique ID of the resource. This unique ID is then inserted into the graph pattern

when SPARQL Generator button is clicked. If the developer selects dynamic as resource type, then

the developer has to enter the properties of the resources with its values. The properties are entered

in a table which has two columns. One column indicates the property name and the other indicates

the value of the properties. The developer can add more properties by clicking the add property button.

When doing this, a new row is appended to the table with two columns. After entering the property

name and its values, the developer will press the SPARQL Generator button. During this, the total

number of rows in the table is calculated and it will be converted into the graph pattern.

There are two strings maintained. One string contains the first three parts of the SPARQL

query which does not change. The second string contains the graph pattern which is changed every

time according to the developer. Finally, both the strings are merged to get the resultant SPARQL

query. The final SPARQL query is displayed in a texarea provided for it. Later, this will be used for

the generation of application description in JSON format.

Generate Application Description Module:

The next main objective of the tool is to generate the application description in JSON format

from the form data. Now for this the whole form data has to be used for generating data in JSON

format. The form data is divided into three sections. The first section contains the information about

the application. The second section contains the information about the first resource including the

SPARQL query. The third section contains the information of the second resource including the

SPARQL query. These three sections has to be grouped together for the JSON format. The JSON

format is divided into two parts. They are the application part and the resource part. Since there is

only one application, the application part contains one object which holds all the direct information

about the application. Since there are two resources, there will be two objects that hold information

about two resources. Then these two resource objects are pushed into an array. Now these data is

converted into JSON and the resultant JSON format of the form is displayed in a textarea when the

developer clicks Generate App Desc button. This will help the developer to verify the data he entered

and the JSON format using any JSON validator.

Enabling/Disabling Module:

 As already mentioned, the developer is given a choice in choosing the resource type. The

developer must be given space for entering appropriate details based on his selection. Other details

should not be shown or enabled to him which may create confusion for the developer. For static

resource type, the developer can enter the resource unique ID directly in a text box. For the dynamic

resource type, the developer can enter the properties of the resources in a table and he can increase

the properties with the help of add property button. If the developer gets both the text box and the

table enabled at the same time irrespective of his selection, then it may lead him to confusion. In order

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 16 of 24 Submission date:

to avoid this, one of the above mentioned has to be disabled according to the developer selection. If

the developer selects static resource type, then the table with the add property button will be disabled

and only the text boy for entering resource unique ID will be enabled. If the developer selects dynamic

resource type, then the text box for entering the resource unique ID will be disabled and table with

the add property button will be enabled.

Download Application Description Module:

Once the developer has generated the application description, he can download the same as a

JSON file. This JSON file will be helpful for the application to register in the knowledge base during

deployment and to find its suitable resource. The final JSON format is displayed for developer’s

reference in a textarea. When the developer clicks the Download button, the value of this textarea

which is the JSON format is taken and a window is opened where we can select save option. Then

the developer is asked select the file path and to enter the file name along with .JSON extension.

Reset the form Module:

This module resets the form data by erasing the values that is being entered. This will help the

developer to enter the information for the next application for which the application description has

to be generated. While resetting, the data which is displayed in the textareas are also removed. In the

resources section, if the developer has selected resource type as dynamic, then all the rows expect the

first row are deleted. And the selection for the resource type is changed to default which is empty

selection. Also, the text box for entering static resource ID and the table for entering dynamic resource

propertied will be disabled.

4.4 The initial implementation

The initial implementation is depicted by Figure 8. Currently, the tool is able to convert the

resource requirements into SPARQL queries and combine them with the other input into a JSON

file that can be downloaded and embedded into the application. The application currently is

responsible to send this description to the resource manager. However, in the future, this will be

done automatically similar to the Meta information of an OSGi bundle.

Figure 8. Screenshot of the initial implementation

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 17 of 24 Submission date:

4.5 Examples of using the generator

In this section we discuss case study of applying the application description generator for the

scenarios discussed in the Figure 3.

In the first scenario, a mobile app is used to control devices in the office of an employee.

The mobile app use IoT resources that are installed in that particular room. These resources

are shared with centralized application that schedule when the resources are on and off. To

save energy, we plan to override the static schedule with a schedule that takes into account

the personal habit of the users when he is in the office.

Let assume that in the office, the mobile app is able to override the schedule of the lighting,

heating, and a personal laser printer which can be switched off from the network. In order to

gain access to these devices, the developer needs to fill the information about the application

(name, critical level, and description) and the resources that are required as depicted in

Figure 9.

On the right side of the tool, the resulting SPARQL queries for each resource requirement

are shown. Moreover, the whole application description is also shown and can be edited

when required.

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 18 of 24 Submission date:

Figure 9. Example of Using Application Description Generator.

Figure 10. Application Description

During the development time, the developers may not know how the IoT resources and his

applications will be deployed. Consequently, the association between the applications and

the resources could be done after the deployment. To allow the mobile app to find the

relevant resources, the three devices (lighting, heater, and printer) are annotated with device

description as shown in Figure 11. These device description are sent to the resource

manager, which then stored in the knowledge base. The most basic way to bind applications

with IoT resources is through the device type and its association as depicted in Figure 10.

Given that devices may be sensors, actuators, displays, communication devices or many

others, this can be a possible way of classifying them in types. But it is also possible that the

devices used in a specific situation are all sensors, or all displays, thus it is not useful to

enforce a classification by type that does not contribute with information to differentiate

devices in all cases. Furthermore, there can be many classifications of sensors according to

{
 "application_ID": "s21phpdqo5zcvuj3o96hicsg64zpzsch",

"application_name": "JohnMobileApp-1",

"description": "control appliances in R123",

"crtical_level": "low",
"application_crticality": "100",
"security_clearance": "medium",

 “resources”:[
 {
 “resource specification ID”: “1”

 “access scheme”: “shared”
 “significance”: “Oblicatory”
 “reliability”: “Medium”

 “query”: “PREFIX rm:<http://purl.oclc.org/IMPReSS/rm#>
 PREFIX ex:<http://exampel.com/ns#>
 SELECT ?resource WHERE{
 ?resource rdf:type rm:Light.

 ?resource rm:associatedTo ex:R123
 }”

},
{

 “resource specification ID”: “2”

 “access scheme”: “shared”
 “significance”: “Oblicatory”
 “reliability”: “Medium”
 “query”: “PREFIX rm:<http://purl.oclc.org/IMPReSS/rm#>

 PREFIX ex:<http://exampel.com/ns#>
 SELECT ?resource WHERE{
 ?resource rdf:type rm:Heater.

 ?resource rm:associatedTo ex:R123
}”

},

{
 “resource specification ID”: “3”
 “access scheme”: “shared”

 “significance”: “Oblicatory”

 “reliability”: “Medium”
 “query”: “PREFIX rm:<http://purl.oclc.org/IMPReSS/rm#>
 PREFIX ex:<http://exampel.com/ns#>

 SELECT ?resource WHERE{
 ?resource rdf:type rm:LaserPrinter.
 }”

}]
}

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 19 of 24 Submission date:

different categories that may be relevant for certain cases and not others. Similarly, there

will be different classifications of actuators, displays and communication devices that are

interesting in different situations. Since it is not known in advance which ones will be

relevant in each case, the granularity of the type classification should not be imposed by the

base ontology. For example, the granularity could be very coarse, e.g. "sensor", "actuator",

"display" and others alike. It could be slightly finer, e.g. "stepper motor", "light sensor",

"computer monitor", "land line" and others alike. It could be even finer, e.g., if there were

only actuators connected, the types could be "electrical", "electromechanical",

"electromagnetic", "smart material", "micro", "nano" and others alike. Finally, it could be as

fine as it is convenient, e.g., if there were only stepper motors connected, the types could

just be "unipolar" and "bipolar". Depending on the case, a different type classification could

be chosen. Thus, the granularity of device types should be left open and unrestricted.

In any case, the base ontology should contain a resource named Type, and its instances

should contain the classification types that are assigned by the developers. This definition of

device type is broad and refers to any classification of devices that is meaningful and useful

in the application domain.

Figure 11. Device description.

4.5.1 Deployment

In the deployment, sometimes the system administrator will need to associate the devices with the
application or change the associated devices to the application. The “associatedTo” attributes at this
point could be added or updated to bind the IoT resources to some location or object of interest that
is to be measured or affected as shown in Figure 12. It shows that a smart plug is bound to the
laser printer. The printer is also bound with the room R123.

Having the information about how IoT resources are associated with the domain objects, allow
application to find the required sensors and actuators to run the application logic. Binding the
application and the required resources is done through the SPARQL query that refer to the required
devices. Alternatively, the SPARQL query could also simply be replaced by any specific ID of the
device.

Assuming that the available devices are unknown during the application development, the system
integrator must assign the association between the application and the available devices by
redefining the application description to accommodate the available IoT resources. Therefore, the

{
“resource ID” : “Light-X111”
“type” : “Light”

“associatedTo“ : “R123“
 “description” : “Ceiling lamp in R123”
 “capability” : “illumination”, “dim”
}

{
 “resource ID” : “Heater-X122”

“type” : “Heater”

“associatedTo“ : “R123“
 “description” : “Heating Unit in X122”
 “capability” : “heating”

}
{
 “resource ID” : “Printer-X123”

 “type” : “LaserPrinter”

“associatedTo“ : “R123“
 “description” : “Laser Printer in R123”
 “capability” : “B/W printing”

}

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 20 of 24 Submission date:

application description generator could be used by the system integrator to generate the necessary
SPARQL query to find the devices.

Figure 12. Binding IoTResources to the domain object.

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 21 of 24 Submission date:

5. Conclusion

Through the resource management in IMPReSS and the application descriptions, we present an
approach to address the dynamic binding between IoT resources and the applications. This
decouples application logic with the IoT resources and allows the application to share IoT resources.

Our approach considers the following scenarios:

1. The IoT resources are unknown during the development, but known during the deployment. In
this case, the system integrator may define a fixed IDs of the required devices and use the
application description generator to generate the application description with that information.

The resource manager will bind the application with the specific devices as defined in the application
description.

2. The IoT resources are unknown during the development, but also unknown during the
deployment since they dynamically enter and leave the environment. In this case, the application
developer or system integrator must define the application requirements in terms of the IoT
resources. The application description generator provides an easy to use user interface that allows
developers without SPARQL knowledge to define the necessary queries.

The resource manager will that use these queries to find the best possible IoT resources for the
application.

To ease the developers’ task in describing the applications’ requirement, we created a web based
application. The developers only need to fill the form on the application without having to care about
the file format which is required by the resource manager. The application description generator can
then generate a file consisting the application requirements expressed in JSON and SPARQL queries.
The Global Resource Manager uses these queries to find the most suitable resources for the
applications by considering their critical levels, as well as balancing the load among IoT resources.

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 22 of 24 Submission date:

6. References

Use the following style for references.

(EC, 2007) European Commission (2007). A lead market initiative for Europe.

Brussels. COM(2007) 860 final.

(Milagro et al 2008) Milagro, F., Antolin, P., Kool, P., Rosengren, P., Ahlsén M. (2008). SOAP
tunnel through a P2P network of physical devices, Internet of Things

Workshop, Sophia Antopolis.

(Chen et al 2007) Chen, Y.C., Liu, C.H., Wang, C.C., Hsieh, M.F. (2007). “RFID and IPv6-

enabled Ubiquitous Medication Error and Compliance Monitoring System”,
9th International Conference on e-Health Networking, Application and

Services, 2007, 19-22 June 2007 Page(s):105 - 108.

Compton et al 2012) Compton M, Barnaghi P, Bermudez L, García-Castro R, Corcho O, Cox S,

Graybeal J, Hauswirth M, Henson C, Herzog A, Huang V, Janowicz K,

Kelsey WD, Le Phuoc D, Lefort L, Leggieri M, Neuhaus H, Nikolov A, Page
K, Passant A, Sheth A & Taylor K. (2012) The SSN ontology of the W3C

semantic sensor network incubator group. Web Semantics: Science,
Services and Agents on the World Wide Web 17(0): 25-32

(Gangemi 2007) Gangemi A. (2007) DOLCE UltraLite OWL Ontology. URI:
http://www.loa.istc.cnr.it/ontologies/DUL.owl. 2014(10/11).

http://www.loa.istc.cnr.it/ontologies/DUL.owl.

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 23 of 24 Submission date:

Appendix A: Resource Management ontology

@prefix rm: <http://purl.oclc.org/IMPReSS/rm#> . # This is not a valid URI (namespace) yet.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dul: <http://www.loa-cnr.it/ontologies/DUL.owl#> .
@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .

Classes
rm:ObjectOfInterest rdfs:subClassOf dul:PhysicalObject, ssn:FeatureOfInterest ;
 rdfs:comment "Physical object that is relevant for the IoT system (e.g. person, room, product)" .
rm:IoTresource a rdfs:Class ;
 rdfs:comment "IoT resource that exposes data or cabapility of a device. " .
rm:Application a rdfs:Class ;
 rdfs:comment "A program that runs in the IMPReSS system and realises certain domain logic by invoking services
provided by the IoT resources" .
rm:ResourceSpecification a rdfs:Class ;
 rdfs:comment "A specification of IoT resource." .

Datatypes
rm:securityLevel a rdfs:Datatype;
 owl:oneOf ("Untrusted" "Low" "Medium" "High" "System").

rm:reliabiliyLevel a rdfs:Datatype;
 owl:oneOf ("Low" "Medium" "High").

Properties
rm:resourceSpecification a owl:ObjectProperty ;
 rdfs:domain rm:Application ;
 rdfs:range rm:ResourceSpecification ;
 rdfs:comment "A relation between application and IoT resource specification." .

rm:uses a owl:ObjectProperty ;
 rdfs:domain rm:Application ;
 rdfs:range rm:IoTresource ;
 rdfs:comment "A relation between application and IoT resource and it uses." .

rm:criticality a owl:DatatypeProperty ;
 rdfs:domain rm:Application ;
 rdfs:range xsd:integer.

rm:securityClearance a owl:DatatypeProperty ;
 rdfs:domain rm:Application ;
 rdfs:range rm:securityLevel .

rm:requiredSecurityLevel a owl:DatatypeProperty ;
 rdfs:domain rm:IoTresource ;
 rdfs:range rm:securityLevel .

rm:associatedTo a owl:ObjectProperty ;
 rdfs:domain rm:IoTresource ;
 rdfs:range rm:ObjectOfInterest ;
 rdfs:comment "A relation between IoT resource and object of interest it is associated with." .

rm:exposes a owl:ObjectProperty ;
 rdfs:domain rm:IoTresource ;
 rdfs:range ssn:Device ;
 rdfs:comment "A relation between IoT resource and device whose capabilities it exposes for applications." .

rm:monitors a owl:ObjectProperty ;
 rdfs:domain rm:IoTresource ;
 rdfs:range ssn:Property ;
 rdfs:comment "A relation between IoT resource and property it provides data about." .

rm:actsOn a owl:ObjectProperty ;

IMPReSS D4.1.2 Final application classification language and tool

Document version: 1.0 Page 24 of 24 Submission date:

 rdfs:domain rm:IoTresource ;
 rdfs:range ssn:Property ;
 rdfs:comment "A relation between IoT resource and property it provides means to act on." .

rm:matches a owl:ObjectProperty ;
 rdfs:domain rm:IoTresource ;
 rdfs:range rm:ResourceSpecification ;
 rdfs:comment "A relation between IoT resource and resource specification it matches." .

rm:reliability a owl:DatatypeProperty ;
 rdfs:domain rm:IoTresource ;
 rdfs:range rm:reliabiliyLevel ;
 rdfs:comment "A relation between IoT resource and reliability level it provides." .

rm:requiredReliability a owl:DatatypeProperty ;
 rdfs:domain rm:ResourceSpecification ;
 rdfs:range rm:reliabilityLevel ;
 rdfs:comment "A relation between resource specification and reliability level it requires." .

rm:significance a owl:DatatypeProperty ;
 rdfs:domain rm:ResourceSpecification ;
 rdfs:range xsd:string . # TODO: specific in more detail

rm:accessScheme a owl:DatatypeProperty ;
 rdfs:domain rm:ResourceSpecification ;
 rdfs:range xsd:string . # TODO: specific in more detail

rm:functionalSpecification a owl:DatatypeProperty ;
 rdfs:domain rm:ResourceSpecification ;
 rdfs:range xsd:string ;
 rdfs:comment "SPARQL format specification for the resource functional capabilities".

Individuals
rm:Sound a ssn:Property ; #check if any sound ontologies are available and make a referene to those
 rdfs:comment "A vibration that propagates as a typically audible mechanical wave of pressure and displacement, through
a medium such as air or water." .
rm:Light a ssn:Property ; #check if any light ontologies are available and make a referene to those
 rdfs:comment "A radiant energy, usually referring to electromagnetic radiation that is visible to the human eye, and is
responsible for the sense of sight. " .
rm:Temperature a ssn:Property ; #check if any temperature ontologies are available and make a referene to those
 rdfs:comment "A a comparative objective measure of hot and cold. " .
rm:Humidity a ssn:Property ; #check if any temperature ontologies are available and make a referene to those
 rdfs:comment "The amount of water vapor in the air " .
rm:Occupancy a ssn:Property;
 rdfs:comment "The state of being an occupant or tenant " .

	1. Introduction
	1.1 Background
	1.2 Purpose, context and scope of this deliverable

	2. Mixed-Critical Application Scenario
	2.1 Opera House Scenario
	2.2 University Campus Scenario

	3. Application Descriptions
	3.1 Development and deployment phase representation
	3.2 Runtime representation

	4. Application Description Generator
	4.1 Use Cases
	4.2 User Interface Design
	4.3 Architecture & Implementation
	4.4 The initial implementation
	4.5 Examples of using the generator
	4.5.1 Deployment

	5. Conclusion
	6. References
	Appendix A: Resource Management ontology

