

(FP7 614100)

D5.3 Data Mining and Machine Learning Tools

DATE – Version 1.0

Published by the IMPReSS Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme and
the Conselho Nacional de Desenvolvimento Científico e Tecnológico

Objective ICT-2013.10.2 EU-Brazil research and development Cooperation

http://www.cnpq.br/index.htm

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 2 of 22 Submission date:

Document control page

Document file: D5.3 Data Mining and Machine Learning Tools_v1.0.docx

Document version: 1.0

Document owner: Eduardo Souto (UFAM)

Work package: WP5 - Data Storage, Analysis & Decision Support

Task: T5.3 Tool Support for Data Learning

Deliverable type: P

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Thiago Rocha 2015-02-02 First Draft

0.2 Wesllen Souza 2015-02-10 Inserting database description to show

how the web application will be used

0.3 Thiago Rocha 2015-02-10 Inserting the description over the

machine learning algorithms provided

by IMPRESS analytics module

0.4 Wesllen Souza 2015-02-16 Ch. 5 (Web application tool) added and

refined.

0.4 Eulanda Santos 2015-02-16 Revision after initial feedback from

Eduardo (UFAM).

0.5 Eduardo Souto 2015-02-17 Ready for internal review

1.0 Eduardo Souto 2015-02-27 Internal review comments incorporated.

Final version ready for submission.

Internal review history:

Reviewed by Date Summary of comments

Carlos Kamienski 2015-02- 23 Accepted with minor corrections and

comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the IMPReSS Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular

purpose. The Members of the IMPReSS Consortium shall not be held liable for errors contained herein

or direct, indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of

the information contained therein.

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 3 of 22 Submission date:

Index:

1. Executive summary ... 4

2. Introduction .. 5

2.1 Purpose, context and scope of this deliverable .. 5
2.2 Background .. 5

3. Web Application Algorithms .. 6

3.1 Regression Algorithms .. 6
3.2 Clustering Algorithms ... 8
3.3 Classification Algorithms ... 9

4. Database ... 11

4.1 Energy Efficiency Data Set ... 11
4.2 Individual Household Eletric Power Consumption Data Set 11
4.3 Database Format .. 12

5. Web Application .. 17

5.1 Classification Example ... 18
5.2 Clustering Example ... 19
5.3 Regression Example .. 20

6. References .. 21

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 4 of 22 Submission date:

1. Executive summary

This deliverable describes a web application used to provide machine learning techniques to help
developers to identify environmental tendencies. The purpose of this web application is to help

developers that do not have any knowledge in machine learning algorithms. With the use of the web

application the developers will be able to compare different machine learning algorithms that are
available at the IMPReSS development platform and choose the best one to fit their needs.

The rest of the deliverable is divided as follows. First, the machine learning algorithms used at the

web application are described. Then, the databases that were chosen to be used will be explained.
After the format that the database data needs to have is explained and finally, a short tutorial is

presented in order to show how the application can be used. This is accomplished by providing

examples which illustrate tasks employing algorithms and databases available in the application.

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 5 of 22 Submission date:

2. Introduction

2.1 Purpose, context and scope of this deliverable

The IMPRESS development platform consists of a set of technologies that help to build general-

purpose applications accessing a plethora of information sources, such as information from the
physical world, analyzing and fusing relevant data, and performing monitoring and control

operations on complex systems. This is achieved through the definition of a number of tools and

pre-defined modules that can be managed and combined in order to define a specific logic flow. One
of these modules is about machine learning techniques.

The purpose of this deliverable is to present a web application developed to provide machine
learning algorithms. In order to help developers to better understand the available algorithms, as

well as to allow developers to choose an algorithm that best fits the monitored scenarios, this

deliverable also describes the algorithms provided and presents practical examples.

2.2 Background

IMPReSS is an EU-Brazil cooperation project aiming at providing a Systems Development Platform
(SDP), which enables rapid and cost effective development of mixed criticality complex systems

involving Internet of Things and Services (IoTS) and at the same time facilitates the interplay with
users and external systems. The IMPReSS development platform will be usable for any system

intended to embrace a smarter society. The demonstration and evaluation of the IMPReSS platform

will focus on energy efficiency systems addressing the reduction of energy usage and CO2 footprint
in public buildings, enhancing the intelligence of monitoring and control systems as well as

stimulating user energy awareness.

The IMPReSS project aims at solving the complexity of system development platform (SDP) by

providing a holistic approach that includes an Integrated Development Environment (IDE),
middleware components, and a deployment tool.

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 6 of 22 Submission date:

3. Web Application Algorithms

Machine Learning algorithms are used to solve tasks for which the design of software using

traditional programming techniques is difficult. Machine failures prediction, filter for electronic mail

messages and user behaviour identification are examples of these tasks. Several different machine
learning algorithms have been proposed in the literature. These algorithms may be divided into

three categories: regression, classification and clustering algorithms. This categorization takes into
account whether or not one of the following aspects is considered: use of labelled training examples,

and real or discrete outputs.

In clustering, samples in the training set are not labelled or classified. The objective is to form
clusters or natural groupings of the input samples. Cluster analysis can be used to provide insight in

the distribution of data, as a pre-processing level for other algorithms, etc. According to the
literature, different clustering algorithms lead to different results.

On the other hand, labelled training samples are available in classification and regression problems.
The objective of these algorithms is to find the best functional relationship between input and

output, called target or decision function. In regression problems, the outputs are continuous values

while the outputs are discrete values in classification problems. Again, several regression and
classification algorithms are available in the literature. These methods may achieve different

performances when evaluated in different problems.

Based on this context, the algorithms provided in the web application are divided into regression,

clustering and classification algorithms. It is important to mention that the algorithms were

developed using scikit-learn [1] - an open source and commercially usable library based on Python.
Another important characteristic is the fact that scikit-learn is broadly used by companies like

Evernote, Spotify and DataRobot. Moreover, this library has a large open source community support
and documentation. In the next section, each algorithm used at the application will be explained.

3.1 Regression Algorithms

Regression algorithms are tools employed to predict a variable which takes continuous values as the
output of a problem. Profit, sales, mortgage rates, house values, square footage, temperature or

distance are examples of outputs which can be predicted using regression techniques [2]. For

instance, a regression model can be used to predict the energy cost of a house taking into account
number of rooms, number of equipment and other features. Among the various regression methods

proposed in the literature, three algorithms are available in the web application, as described below.

3.1.1 Linear Regression

Linear regression is the most popular and well-studied form of regression. This algorithm focuses on

finding the best-fitting straight line through points. The best-fitting line is called a regression line [3].
Linear regression was the first type of regression analysis to be studied rigorously, and to be used

extensively in practical applications. This is due to the fact that models linearly related to their

unknown parameters are easier to fit than models non-linearly related to their parameters.
Moreover, the statistical properties of the resulting estimators are easier to determine [4]. Linear

regression has many practical uses. Most applications fall into one of the following two broad
categories:

 When the goal is prediction, forecasting, or reduction, linear regression can be used to

generate a predictive model based on an observed data set composed of X values and its

y labels. After designing such a model, if an unknown value X (with no label y) has to be
predicted, the generated model can be used to assign a y value for X.

 Given a variable y and a number of variables X1, ..., Xp that may be related to y, linear

regression analysis can be applied to quantify the strength of the relationship between y and
the Xj, to assess which Xj may have no relationship with y at all, and to identify which

subsets of the Xj contain redundant information about y.

http://en.wikipedia.org/wiki/Regression_analysis

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 7 of 22 Submission date:

The linear regression model fits a linear function to a set of data points [5]. The form of the function
is:

Y = β0 + β1*X1 + β2*X2 + … + βn*Xn

where Y is the target variable and X1, X2, ... Xn are the predictor variables and β1, β2, … βn are the

coefficients that multiply the predictor variables. β0 is constant. For example, given a CEO of a
shoes company franchise who is considering different cities for opening a new store, in addition, the

chain already has stores in various cities and the CEO has data for profits and populations from the
cities. In this scenario, the CEO can use this data to help at the selection of which city to expand

next, by using linear regression to predict profits for the new store.

3.1.2 Logistic Regression

Logistic Regression is a regression algorithm that predicts the probability of occurrence of an event

by fitting data to a logit function (logistic function). Similar to many forms of regression analysis,

Logistic Regression relies on using several predictor variables, which may be either numerical or
categorical. For instance, the probability that a person may have a heart attack within a specified

time period might be predicted based on features such as the person's age, sex and body mass
index. This regression algorithm is frequently used in different scenarios like prediction of customer's

propensity to purchase a product or cease a subscription in marketing applications and many others

[6].

Given p (x) the probability of occurrence of event x, formally, the logistic regression model is:

log =
𝑝(𝑥)

1 − 𝑝(𝑥)

On the one hand, it is widely accepted that Logistic Regression has several advantages over linear
regression [6]. For instance, Logistic Regression is more robust than linear regression since it does

not assume linear relationship. As a consequence, it may handle nonlinear effects. On the other, it
requires much more data to achieve stable and meaningful results.

3.1.3 SVM Regression

Support Vector Machines (SVM) is a supervised learning algorithm employed to analyse data and to

recognize patterns, which is used in classification and regression problems. SVM is based on the

notion of a hyperplane that separates two data classes by maximizing the margin between them.
Therefore, SVM focuses on creating the largest possible distance between the separating hyperplane

and the instances on either side of it. The literature has shown that SVM may reduce both the
training and the expected generalisation error.

SVR, SVM version for regression, maintains all the main features that characterise the maximal

margin algorithm: a non-linear function is learned by a linear learning machine in a kernel-induced
feature space, while the capacity of the system is controlled by a parameter that does not depend

on the dimensionality of the space. In SVR, the basic idea is to map the data x into a high-
dimensional feature space F via a nonlinear mapping T and to employ linear regression in space F

[7].

In SVR, the objective is to estimate the functional dependence of a dependent variable y on a set of
independent variables x. It is assumed, as in other regression problems, that the relationship

between the independent and dependent variables is given by a deterministic function f plus the
addition of some noise, as shown below:

y = f(x) + 𝑛𝑜𝑖𝑠𝑒

http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Regression_analysis

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 8 of 22 Submission date:

Thus, the task involves finding a functional form for f that will lead to a correctly prediction of new
cases. The SVR training process is accomplished through the sequential optimization of an error

function. Depending on the definition of this error function, different types of SVM models can be

recognized.

In the web application, both SVR and SVM for classification, known as SVC, are provided.

3.2 Clustering Algorithms

Clustering techniques try to identify natural clusters of input data according to a similarity measure,

for instance Euclidian distance. The members of the same cluster are more similar to each other than
they are in comparison with members of other clusters. The goal of clustering analysis is to find high-

quality clusters such that the inter-cluster similarity is low and the intra-cluster similarity is high [2].
Among several clustering algorithms proposed in the literature, two algorithms are available in the

web service. These algorithms are described in this section.

3.2.1 K-Means

K-Means is one of the simplest unsupervised learning algorithms applied to solve clustering

problems. The procedure follows a simple and easy way to group a given data set into k clusters,
where k is fixed a priori. First, k centroids are chosen, one for each cluster. These centroids should

be placed in a cunning way because different location causes different results. So, the best choice is

to place them as much as possible far away from each other [8].

In the second step, each sample belonging to a given data set is associated to the nearest centroid.

The nearest centroid of each sample is pointed out by means of similarity measures such as
Euclidian distance. When no sample is pending, each group is then defined. After, k new centroids

are re-calculated as barycentre’s of the clusters generated in the previous step. After the

identification of these k new centroids, a new comparison is done between the same data set
samples and the nearest new centroid. Thus, a loop is generated. The result of this loop may lead

the k centroids change their location step by step until no more changes are detected. Then, the
algorithm attains its convergence.

The web application described in this deliverable also provides an alternativeversion of K-Means,
called Mini Batch K-Means. This version uses mini-batches to reduce the computation time, while still

attempting to optimise the same objective function. Mini-batches are subsets of the input data,

randomly sampled in each training iteration. These mini-batches drastically reduce the amount of

computation required to converge to a local solution. In contrast to other algorithms that reduce the
convergence time of k-means, mini-batch k-means produces results that are generally only slightly

worse than the standard algorithm [9].

3.2.2 MeanShift

Another algorithm available in the web application is MeanShift. The MeanShift algorithm is a

nonparametric clustering technique which does not require prior knowledge of the number of
clusters, and does not constrain the shape of the clusters. This algorithm considers feature space as

an empirical probability density function.

Given a set of samples, MeanShift considers them as sampled from the underlying probability

density function. If clusters are presented in the feature space, then they will correspond to the
mode of the probability density function. For each sample, MeanShift associates it with the nearby

peak of a dataset probability density function. Thus, for a set of samples, MeanShift defines a

window around it and computes the mean of each set. Then, it shifts the centre of the window to
the mean and repeats the algorithm until it converges. After each iteration, it is considered that the

window shifts to a denser region of the dataset.

At the high level, we can specify MeanShift as follows:

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 9 of 22 Submission date:

 Fix a window around each sample.

 Compute the mean of data within the window.

 Shift the window to the mean and repeat till convergence.

3.3 Classification Algorithms

Handwritten digits recognition, business modeling, and credit analysis are examples of classification

problems. As a type of supervised learning, a classification algorithm builds a model that is used to
assign labels to the unknown examples. The data used to generate the models may include energy

consumption information such as cost and time to allow the prediction of classes of behaviors. The

input or training data for a supervised learning algorithm requires the presence of attributes to
represent each training sample, as well the classes assigned to the training samples [11].

Three classification methods are provided in the web service: Decision Tree and Naïve Bayes, which
are single-based classifier algorithms; and random forest – an ensemble-based classification method.

3.3.2 Decision Tree

Decision tree builds classification models in the form of a tree structure. It breaks down a dataset

into smaller subsets while at the same time an associated decision tree is incrementally developed.

Therefore, Decision tree uses a flowchart structure to evolve a set of data inside of some pre-defined
classes, providing a description, categorization and generalization of a set of data. The final result is

a tree with decision nodes and leaf nodes: decision nodes have two or more branches, while leaf
nodes represent a classification or decision. The topmost decision node in a tree is called root node,

which corresponds to the most relevant feature among all features used to describe each sample of

the training dataset. Decision trees can handle both categorical and numerical features [14].
Decision Tree-based algorithms have the following main features [15].

 Are simple to understand and interpret. People are able to understand decision tree models

after a brief explanation.

 Provide important information even with little hard data. Important insights can be

generated based on experts describing a situation and their preferences for outcomes.

 Allow the addition of new possible scenarios.

 Help determine worst, best and expected values for different scenarios.

 Can be combined with other decision techniques.

3.3.3 Naive Bayes

Naive Bayes classifier is a probabilistic method based on applying Bayes theorem with naive
independence assumptions. The independence assumption leads a naive Bayes classifier to assume

that the presence (or absence) of a particular feature of a class is unrelated to the presence (or
absence) of any other feature. For instance, a user may be considered to be a highly energy

consumer if he/she has air conditioner always working, several guests, and about 10 rooms in his/her
home. Even if these features depend on each other or upon the existence of the other features, a

naive Bayes classifier considers all of these properties to independently contribute to the probability

that this person is highly energy consumer [16].

Naive Bayes classifiers can be trained in a supervised learning setting. In many practical applications,
parameter estimation for Naive Bayes models uses the method of maximum likelihood. In addition,

an advantage of the Naive Bayes classifier is that it requires a small amount of training data to

estimate the parameters (means and variances of the variables) necessary for classification. Because
independent variables are assumed, only the variances of the variables for each class need to be

determined and not the entire covariance matrix. The web application has the Gaussian Naive Bayes
type developed, this kind of naïve Bayes classifier may deal with continuous data.

http://www.wikipedia.org/wiki/Classifier_(mathematics)
http://www.wikipedia.org/wiki/Bayes%27_theorem
http://www.wikipedia.org/wiki/Statistical_independence
http://www.wikipedia.org/wiki/Supervised_learning
http://www.wikipedia.org/wiki/Maximum_likelihood
http://www.wikipedia.org/wiki/Covariance_matrix

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 10 of 22 Submission date:

3.3.1 Random Forest

Classifier ensembles attempt to overcome the complex task of designing a robust, well suited
individual classifier by combining the decisions of relatively simpler classifiers. It has been shown that

significant performance improvements can be obtained by creating classifier ensembles and

combining their classifier members’ outputs instead of using single classifiers. The construction of
classifier ensembles may be performed by adopting different strategies. One possibility is varying the

data, for instance using different data sources, different pre-processing methods, different sampling
methods, distortion, etc. It is important to mention that the generation of an ensemble of classifiers

involves the design of the classifiers members and the choice of the fusion function to combine their
decisions.

Even though several ensemble methods are reported in the literature, only one of the most popular
ensemble construction methods is provided in the web service: Random Forest. This classifier

ensemble consists of a collection or simple tree predictors, each capable of producing a response
when presented with a set of predictor values. For classification problems, this response takes the

form of a class membership which associates or classifies a set of independent predictor values with

one of the categories present in the dependent variable [12].

Random Forest is obtained by manipulating the original set of features available for training. The
objective is to provide a partial view of the training dataset to each ensemble member, leading them

to be different from each other. In addition, this ensemble method is also based on varying the
training samples in order to generate different datasets for training the ensemble members. In this

way, the classifier members will be accurate and different from each other to ensure performance

improvement.

In terms of combination function, given a set of simple trees and a set of random predictor variables,
the Random Forest method defines a margin function that measures the extent to which the average

number of votes for the correct class exceeds the average vote for any other class present in the

dependent variable. This measure provides not only a convenient way of making predictions, but also
a way of associating a confidence measure with those predictions. Random Forest has some features

[13]:

 It is unexcelled in accuracy among current algorithms.

 It runs efficiently on large data bases.

 It can handle thousands of input variables without variable deletion.

 It gives estimates of what variables are important in the classification.

 It generates an internal unbiased estimate of the generalization error as the forest building

progresses.

 It has an effective method for estimating missing data and maintains accuracy when a large

proportion of the data are missing.

 It has methods for balancing error in class population unbalanced data sets.

 Prototypes are computed that give information about the relation between the variables and

the classification.

 It offers an experimental method for detecting variable interactions.

Besides learning algorithms, the web service also provides some databases in order to help

developers to better understand how the learning algorithms work. The databases are described in
the next section.

http://www.statsoft.com/textbook/classification-and-regression-trees/
http://www.statsoft.com/textbook/statistics-glossary/i.aspx?button=i#Independent vs. Dependent Variables
http://www.statsoft.com/textbook/statistics-glossary/i.aspx?button=i#Independent vs. Dependent Variables

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 11 of 22 Submission date:

4. Database

Two databases were chosen to show how the web application will be used. These databases were

downloaded from [17], a very well-known site with machine learning databases. The goals of each

database will be explained below. Then, a how-to is presented to show how the data from these
databases have to be formatted to be used in the application.

4.1 Energy Efficiency Data Set

This dataset was created by Angeliki Xifara and processed by Athanasios Tsanas. The goal is to
evaluate the heating cooling load requirements of buildings (that is, energy efficiency) as a function

of building parameters.

The energy analysis was performed using 12 different building shapes. They differ with respect to

the glazing area, the glazing area distribution, and the orientation, amongst other parameters.

Various settings were simulated as functions of the afore-mentioned characteristics to obtain 768
building shapes.

As mentioned above, the dataset comprises 768 samples and 8 features (denoted by X1...X8),
aiming to predict two real valued responses (denoted by y1 and y2). Therefore, it is a dataset for

regression algorithms, which can be converted to classification problems.

Originally, the objective is to use the eight features to predict each of the two responses. The
features are listed below:

 X1 Relative Compactness

 X2 Surface Area

 X3 Wall Area

 X4 Roof Area

 X5 Overall Height

 X6 Orientation

 X7 Glazing Area

 X8 Glazing Area Distribution

 y1 Heating Load

 y2 Cooling Load

4.2 Individual Household Electric Power Consumption Data Set

This dataset was created by Georges Hebrail, to measure the electric power consumption in one

household with a one-minute sampling rate over a period of almost 4 years. Again, it is a regression
problem.

Different electrical quantities and some sub-metering values are available. The dataset contains
2.075.259 measurements gathered between December 2006 and November 2010 (47 months). For

the web service, we got information only from 2007. The dataset contains nine attributes, as listed

below:

 date: Date in format dd/mm/yyyy

 time: time in format hh:mm:ss

 global_active_power: household global minute-averaged active power (in kilowatt)

 global_reactive_power: household global minute-averaged reactive power (in kilowatt)

 voltage: minute-averaged voltage (in volt)

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 12 of 22 Submission date:

 global_intensity: household global minute-averaged current intensity (in ampere)

 sub_metering_1: energy sub-metering No. 1 (in watt-hour of active energy). It corresponds

to the kitchen, containing mainly a dishwasher, an oven and a microwave (hot plates are not
electric but gas powered).

 sub_metering_2: energy sub-metering No. 2 (in watt-hour of active energy). It corresponds

to the laundry room, containing a washing-machine, a tumble-drier, a refrigerator and a
light.

 sub_metering_3: energy sub-metering No. 3 (in watt-hour of active energy). It corresponds

to an electric water-heater and an air-conditioner.

4.3 Database Format

To be used in the web application, the databases have to follow a JSON pattern. Classification and

regression algorithms follow the same pattern. On the other hand, clustering and the metrics of each
algorithm have different forms. Frame 1 shows the JSON format for classification and regression

input.

Frame 1 JSON Input format for classification and regression algorithms.

As can be observed in Frame 1, JSON format contains three keys explained below:

 Data: This key represents the data that will be learned to generate the model. The data
should be a matrix (𝑑𝑛𝑚), where n indicates the number of samples and m indicates the

number of features. The features should be integers or float numbers.

 Target: This key represents the target attributes corresponding to each line of the data

matrix. The target attributes are used by the algorithm to map input to output in order to

predict new data contained in the key predict. The array should contain integers or float
numbers. The array length should be exactly the matrix line numbers, i.e. n.

 Predict: This key has the unknown samples that will be used to make predictions. These

data can be represented in an array or a matrix that contains either integers or float

numbers.

Frame 2 shows the results returned from applying the classification algorithms, with two keys:

 Predicted: This key returns an array of data with integer or floats values and shows the
prediction target assigned to each sample. The samples are collected from the predict key in

Frame 1.

{

 "data": [[𝑑11, 𝑑12, 𝑑13, … , 𝑑1𝑚],
 [𝑑21, 𝑑22, 𝑑23, … , 𝑑2𝑚],

 [⋮ , ⋮, ⋮ , ⋮ , ⋮],
 [𝑑𝑛1, 𝑑𝑛2, 𝑑𝑛3, … , 𝑑𝑛𝑚]],

 "target": [𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛],

 "predict": [[𝑝11, 𝑝12, 𝑝13, … , 𝑝1𝑚],
 [𝑝21, 𝑝22, 𝑝23, … , 𝑝2𝑚],

 [⋮ , ⋮, ⋮ , ⋮ , ⋮],
 [𝑝𝑛1, 𝑝𝑛2, 𝑝𝑛3, … , 𝑝𝑛𝑚]]]

}

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 13 of 22 Submission date:

 Score: This key represents the accuracy on the given test data and returns a float value.

Frame 2. Result from classification algorithms.

Frame 3 shows the result returned from regression algorithms. The result has three keys:

 Decision Function: This key returns an array of data with integer or float values and

represents the decision function from the model used to predict confidence scores for

samples.

 Predicted: This key returns an array of data with integer or float values and shows the

prediction of each sample. The samples are collected from the predict key in Frame 1 and

the prediction is based on the data contained in the key decision function.

 Score: This key represents the accuracy on the given test data and returns a float value.

Frame 3. Result from regression algorithms.

Frame 4. JSON Input format for clustering algorithms.

Frame 4 shows the json format that covers the clustering algorithms (Kmeans, MeanShift,
MiniBatchKMeans). The format contains two keys:

{

 "Predicted": [𝑝11, 𝑝12, 𝑝13, … , 𝑝1𝑚],

 "Score": [𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛]

}

{

 "Decision Function": [𝑑11, 𝑑12, 𝑑13, … , 𝑑1𝑚],

 "Predicted": [𝑝11, 𝑝12, 𝑝13, … , 𝑝1𝑚],

 "Score": [𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛]

}

{

 "data": [[𝑑11, 𝑑12, 𝑑13, … , 𝑑1𝑚],
 [𝑑21, 𝑑22, 𝑑23, … , 𝑑2𝑚],

 [⋮ , ⋮, ⋮ , ⋮ , ⋮],
 [𝑑𝑛1, 𝑑𝑛2, 𝑑𝑛3, … , 𝑑𝑛𝑚]],

 "predict": [[𝑑11, 𝑑12, 𝑑13, … , 𝑑1𝑚],
 [𝑑21, 𝑑22, 𝑑23, … , 𝑑2𝑚],

 [⋮ , ⋮, ⋮ , ⋮ , ⋮],
 [𝑑𝑛1, 𝑑𝑛2, 𝑑𝑛3, … , 𝑑𝑛𝑚]]

}

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 14 of 22 Submission date:

 Data: This key represents the data that will be trained to generate the model. The data
should be a matrix (𝑑𝑛𝑚), again n indicates the number of samples and m indicates the

number of features. The features should be integers or float numbers.

 Predict: This key has the samples that will be used to make predictions (test set) to

discover the clusters. These data can be represented in an array or a matrix that contains

either integers or float numbers.

Frame 5 shows the result returned from clustering algorithms. The result has two keys:

 Predicted: This key returns an array of data with integer or float values and indicates

which cluster the data from the predict key from Frame 4 belongs to.

 Fit Predict: This key returns an array of data with integer or float values and indicates

which cluster the data from the data key from Frame 4 belongs to.

Frame 5. Result returned from clustering algorithms.

Frame 6. JSON Input format for metrics algorithms.

Frame 6 shows the format that covers the metrics algorithms. The format has four keys:

 Y_predict: This key returns an array that contains either integer or floats numbers and

represents the predicted labels that were returned by a classifier.

 Y_true: This key represents the ground truth (correct) labels. These data can be

represented as an array that contains either integers or float numbers.

 t_binary: This key represents the true binary labels in binary label indicators. These data

can be represented as an array that contains either integer or float numbers.

 Y_scores: This key represents the target scores that can either be probability estimates of

the positive class, confidence values, or binary decisions. These data can be represented as

an array that contains either integers or float numbers.

Metrics algorithms are divided into three groups. Each group is responsible for measuring the results

of the classification, cluster and regression algorithms. Also, the algorithms do not use all the keys
described in Frame 6. Table 1 shows the algorithms with their respective descriptions and keys used.

{

 "Predicted": [𝑝11, 𝑝12, 𝑝13, … , 𝑝1𝑚],

 "Fit Predict": [𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛]

}

{

"y_predict": [𝑝1 , 𝑝2, 𝑝3, … , 𝑝𝑛],

"y_true": [𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛],

"y_binary": [𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛],

"y_scores": [𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛]

}

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 15 of 22 Submission date:

Table 1. Metrics algorithms.

The statistics algorithms also have a format that is depicted in frame 7 and has four keys:

 Value: This key represents a value, which must be integer or float.

 Vector, vector 2: These keys represent an array of data with integer or float values.

 Matrix: This key represents the matrix that contains either integers or float numbers.

Algorithms Description Keys

Metrics for classification algorithms

Accuracy Score In multilabel classification, this function computes

subset accuracy: the set of labels predicted for a
sample must exactly match the corresponding set

of labels in y_true.

y_true,

y_predict

Average Precision Score Compute average precision from prediction
scores. This score corresponds to the area under

the precision-recall curve. This implementation is

restricted to the binary classification task or
multilabel classification task.

y_binary,
y_scores

Precision Score Compute the precision. The precision is intuitively
the ability of the classifier not to label as positive

a sample that is negative. The best value is 1 and

the worst value is 0.

y_true,
y_predict

Recall Score Compute the recall. The recall is intuitively the

ability of the classifier to find all the positive

samples. The best value is 1 and the worst value
is 0.

y_true,

y_predict

Roc Auc Score Compute Area Under the Curve from prediction
scores. This implementation is restricted to the

binary classification task or multilabel

classification task in label indicator format.

y_binary,
y_scores

Metrics for cluster algorithms

Adjusted Rand Score Rand index adjusted for chance. The Rand Index

computes a similarity measure between two
clusters by considering all pairs of samples and

counting pairs that are assigned in the same or in

different clusters in the predicted and true
clusters.

y_true,

y_scores

Metrics for regression algorithms

Mean Squared Error Mean squared error regression loss. y_true,
y_predict

R2 Score R^2 (coefficient of determination) regression

score function. Best possible score is 1.0, lower
values are worse.

y_true,

y_predict

Explained Variance Score Explained variance regression score function.
Best possible score is 1.0, lower values are worse.

y_true,
y_predict

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 16 of 22 Submission date:

Frame 7. Json Input format for statistic algorithms.

Statistic algorithms are divided into three groups (orders, average and variances, correlating). The
algorithms do not use all the keys described in Frame 7. Table 2 shows the algorithms with their

respective descriptions and keys.

Table 2. Statistic algorithms.

Algorithms Description Keys

Orders

Minimum Return the minimum of an array or minimum

along an axis.

vector

Maximum Return the maximum of an array or maximum

along an axis.

vector

Nan Minimum Return minimum of an array or minimum along
an axis, ignoring any NaNs.

vector

Nan Maximum Return the maximum of an array or maximum

along an axis, ignoring any NaNs.

vector

Percentile Compute the qth percentile of the data along the

specified axis.

Matrix,

value

Correlating

Correlation

Coefficients

Return correlation coefficients. vector

Correlate Cross-correlation of two 1-dimensional
sequences.

Vector,
Vector2

Covariance

Matrix

Estimate a covariance matrix, given data. Matrix

Average and Variances

Average Compute the weighted average along the

specified axis.

vector

Mean Compute the arithmetic mean along the specified
axis.

vector

Median Compute the median along the specified axis. vector

Standard
Deviation

Compute the standard deviation along the
specified axis.

vector

Variance Compute the variance along the specified axis. vector

{

"value": value,

"vector ": [𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛],

"vector2": [𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛],

"matrix": [[𝑑11, 𝑑12, 𝑑13, … , 𝑑1𝑚],
 [𝑑21, 𝑑22, 𝑑23, … , 𝑑2𝑚],

 [⋮ , ⋮, ⋮ , ⋮ , ⋮],
 [𝑑𝑛1, 𝑑𝑛2, 𝑑𝑛3, … , 𝑑𝑛𝑚]]

}

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 17 of 22 Submission date:

5. Web Application

A web application1 was developed to provide regression, classification and clustering algorithms, in

order to compare algorithms and to help users in understanding and choosing which algorithm fits in

specific scenarios. Figure 1 show the initial interface.

 Figure 1: Web Application initial screen.

As emphasized by Figure 1, users are able to choose between statistics, data mining, and

optimization algorithms. This deliverable only focuses on the data mining algorithms. After choosing

“Data Mining”, the user may select the category and the algorithm to be used. For instance,
category Cluster and algorithm k-Means, as shown in Figure 2.

 Figure 2: Web Application configuration.

After the user has chosen a category and an algorithm, a database has to be selected in order to
allow the process to continue. As discussed in Section 4, the database must have a specific format.

Figure 3 shows a snapshot of the screen. When clicking on the “choose the database” button from

Figure 3, users may execute the following tasks:

1. Choose: Option that allows users to choose a database from their computer to upload it to

the server.

2. Upload: This option starts the upload process of the database.

3. Cancel: Option that is used to cancel an upload.

4. Select: This option is used if the database is already at the server and the user just wants
to select it again.

5. Download: Option used to download a database from the server to the computer.

1
http://impressufam.cloudapp.net:8080/AlgorithmsTools

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 18 of 22 Submission date:

6. Delete: Option used to delete a database from the server.

 Figure 3: Web Application database selection.

After choosing these parameters, the users have to click on the “execute” button to start the

execution of the algorithms and check the results. Next, an example of usage with real databases
will be depicted.

5.1 Classification Example

To run the classification example, the decision tree algorithm was chosen along with the

energy_efficient_cooling_load database. After selecting these parameters, the web application should

looks like Figure 4.

 Figure 4: Configuring a classification algorithm in the web application.

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 19 of 22 Submission date:

The goal of this example is to use the energy_efficient_cooling_load to discover the class of a

sample. As explained in section 4, this sample is added in the “predict” key. In this case, the
“[0.62,808.50,367.50,220.50,3.50,5,0.40,5]” sample was added, where each number into the array

represents respectively the attributes of the sample. By clicking on the application execute button, it
will be shown the following result, as depicted at Figure 5.

 Figure 5: Web Application classification result.

This result shows that the sample “[0.62,808.50,367.50,220.50,3.50,5,0.40,5]” belongs to the class

number 16 and that the algorithm score was 1.0.

5.2 Clustering Example

To run a clustering example, K-Means algorithm was chosen along with the

energy_efficient_heating_load database. After selecting these parameters, the web application
should looks like Figure 6.

 Figure 6: Configuring a clustering algorithm in the web application.

The goal of this example is to use the energy_efficient_heating_load to discover the group of a
sample. Again, as explained in section 4, this sample is added in the “predict” key, in this case the

“[0.62,808.50,367.50,220.50,3.50,5,0.40,5]” sample was added, where each number into the array
represents respectively the attributes of the sample. By selecting on the application execute button,

the following result depicted in Figure 7 will be obtained. The “predict” key shows that the sample

belongs to group 5 and the “fit_predict” key shows the groups from the other data that are
configured in the “data” key.

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 20 of 22 Submission date:

 Figure 7: Web Application clustering result.

5.3 Regression Example

In order to run a regression example, Linear Regression algorithm was chosen to learn
household_power_consumption_sub_metering_1 database. After selecting these parameters, the

web application should looks like Figure 8.

 Figure 8: Configuring a regression algorithm in the web application.

The goal of this example is to use the household_power_consumption_sub_metering_1 to train data

from January and to predict the values that should appear in February. The results are shown in the
“predict” key, but they are too large to show in a figure.

The examples provided in this section show how the learning algorithms provided in the web service
may be used, as well as how the input databases must be formatted.

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 21 of 22 Submission date:

6. References

[1] Scikit-learn:machine learning in Pythong. Available in: http://scikit-learn.org/stable/. Date Acess:

10/01/2015.

[2] Oracle® Database Concepts 11g Release 1 (11.1). Available

in: http://docs.oracle.com/cd/B28359_01/server.111/b28318.pdf. Date Acess: 07/11/2014.

[3] Introduction to Linear Regression. Available in: http://onlinestatbook.com/2/regression/intro.html

Date Acess: 10/01/2015.

[4] Linear Regression. Available in: http://en.wikipedia.org/wiki/Linear_regression Date Acess:

10/01/2015.

[5] Machine Learning with Python - Linear Regression. Available in:
http://aimotion.blogspot.com.br/2011/10/machine-learning-with-python-linear.html Date Acess:

13/01/2015.

[6] Machine Learning with Python – Logistic Regression. Available in:

http://aimotion.blogspot.com.br/2011/11/machine-learning-with-python-logistic.html Date Acess:
13/01/2015.

[7] Support Vector Machines for Regression. Available in: http://www.svms.org/regression/ Date Acess:
13/01/2015.

[8] Clustering – K-means. Available in:
http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/kmeans.html Date Acess: 14/01/2015.

[9] Clustering – scikit-learn 0.15.2 documentation. Available in: http://scikit-

learn.org/stable/modules/clustering.html#mini-batch-kmeans Date Acess: 14/01/2015.

[10] Introduction to Mean Shift algorithm. Available in:

https://saravananthirumuruganathan.wordpress.com/2010/04/01/introduction-to-mean-shift-
algorithm/ Date Acess: 03/01/2015.

[11] Oracle® Database Concepts 10g Release 1 (10.1). Available
in: http://docs.oracle.com/pdf/B10698_01.pdf. Date Acess: 07/11/2014.

[12] Random Forest. Available in: http://www.statsoft.com/Textbook/Random-Forest. Date Acess:

10/01/2015.

[13] Random Forest – classification description. Available

in: https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm. Date Acess: 10/01/2015.

[14] Decision Tree. Available in: http://www.saedsayad.com/decision_tree.htm. Date Acess: 10/01/2015.

[15] Decision tree. Available in: http://en.wikipedia.org/wiki/Decision_tree. Date Acess: 10/01/2015.

[16] Naive Bayes classifier. Available
in: http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Naive_Bayes_classifier.html. Date

Acess: 10/01/2015.

http://docs.oracle.com/pdf/B10698_01.pdf

IMPReSS Dn.x Deliverable Name

Document version: 0.1 Page 22 of 22 Submission date:

[17] UCI Machine Learning Repository. Available in: http://archive.ics.uci.edu/ml/. Date Acess:
03/01/2015.

