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1.  Executive summary 

This deliverable describes a web application used to provide machine learning techniques to help 
developers to identify environmental tendencies. The purpose of this web application is to help 

developers that do not have any knowledge in machine learning algorithms.  With the use of the web 

application the developers will be able to compare different machine learning algorithms that are 
available at the IMPReSS development platform and choose the best one to fit their needs.  

 
The rest of the deliverable is divided as follows. First, the machine learning algorithms used at the 

web application are described. Then, the databases that were chosen to be used will be explained. 
After the format that the database data needs to have is explained and finally, a short tutorial is 

presented in order to show how the application can be used. This is accomplished by providing 

examples which illustrate tasks employing algorithms and databases available in the application. 
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2. Introduction 

2.1 Purpose, context and scope of this deliverable 

The IMPRESS development platform consists of a set of technologies that help to build general-

purpose applications accessing a plethora of information sources, such as information from the 
physical world, analyzing and fusing relevant data, and performing monitoring and control 

operations on complex systems. This is achieved through the definition of a number of tools and 

pre-defined modules that can be managed and combined in order to define a specific logic flow. One 
of these modules is about machine learning techniques. 

The purpose of this deliverable is to present a web application developed to provide machine 
learning algorithms. In order to help developers to better understand the available algorithms, as 

well as to allow developers to choose an algorithm that best fits the monitored scenarios, this 

deliverable also describes the algorithms provided and presents practical examples. 

 

2.2 Background 

IMPReSS is an EU-Brazil cooperation project aiming at providing a Systems Development Platform 
(SDP), which enables rapid and cost effective development of mixed criticality complex systems 

involving Internet of Things and Services (IoTS) and at the same time facilitates the interplay with 
users and external systems. The IMPReSS development platform will be usable for any system 

intended to embrace a smarter society. The demonstration and evaluation of the IMPReSS platform 

will focus on energy efficiency systems addressing the reduction of energy usage and CO2 footprint 
in public buildings, enhancing the intelligence of monitoring and control systems as well as 

stimulating user energy awareness.  

The IMPReSS project aims at solving the complexity of system development platform (SDP) by 

providing a holistic approach that includes an Integrated Development Environment (IDE), 
middleware components, and a deployment tool. 
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3. Web Application Algorithms 

Machine Learning algorithms are used to solve tasks for which the design of software using 

traditional programming techniques is difficult. Machine failures prediction, filter for electronic mail 

messages and user behaviour identification are examples of these tasks. Several different machine 
learning algorithms have been proposed in the literature. These algorithms may be divided into 

three categories: regression, classification and clustering algorithms. This categorization takes into 
account whether or not one of the following aspects is considered: use of labelled training examples, 

and real or discrete outputs. 

In clustering, samples in the training set are not labelled or classified. The objective is to form 
clusters or natural groupings of the input samples. Cluster analysis can be used to provide insight in 

the distribution of data, as a pre-processing level for other algorithms, etc. According to the 
literature, different clustering algorithms lead to different results.  

On the other hand, labelled training samples are available in classification and regression problems. 
The objective of these algorithms is to find the best functional relationship between input and 

output, called target or decision function. In regression problems, the outputs are continuous values 

while the outputs are discrete values in classification problems. Again, several regression and 
classification algorithms are available in the literature. These methods may achieve different 

performances when evaluated in different problems.   

Based on this context, the algorithms provided in the web application are divided into regression, 

clustering and classification algorithms. It is important to mention that the algorithms were 

developed using scikit-learn [1] - an open source and commercially usable library based on Python. 
Another important characteristic is the fact that scikit-learn is broadly used by companies like 

Evernote, Spotify and DataRobot. Moreover, this library has a large open source community support 
and documentation. In the next section, each algorithm used at the application will be explained.  

3.1 Regression Algorithms 

Regression algorithms are tools employed to predict a variable which takes continuous values as the 
output of a problem. Profit, sales, mortgage rates, house values, square footage, temperature or 

distance are examples of outputs which can be predicted using regression techniques [2]. For 

instance, a regression model can be used to predict the energy cost of a house taking into account 
number of rooms, number of equipment and other features. Among the various regression methods 

proposed in the literature, three algorithms are available in the web application, as described below. 

3.1.1 Linear Regression 

Linear regression is the most popular and well-studied form of regression. This algorithm focuses on 

finding the best-fitting straight line through points. The best-fitting line is called a regression line [3]. 
Linear regression was the first type of regression analysis to be studied rigorously, and to be used 

extensively in practical applications. This is due to the fact that models linearly related to their 

unknown parameters are easier to fit than models non-linearly related to their parameters. 
Moreover, the statistical properties of the resulting estimators are easier to determine [4]. Linear 

regression has many practical uses. Most applications fall into one of the following two broad 
categories: 

 When the goal is prediction, forecasting, or reduction, linear regression can be used to 

generate a predictive model based on an observed data set composed of X values and its 

y labels. After designing such a model, if an unknown value X (with no label y) has to be 
predicted, the generated model can be used to assign a y value for X. 

 Given a variable y and a number of variables X1, ..., Xp that may be related to y, linear 

regression analysis can be applied to quantify the strength of the relationship between y and 
the Xj, to assess which Xj may have no relationship with y at all, and to identify which 

subsets of the Xj contain redundant information about y. 

http://en.wikipedia.org/wiki/Regression_analysis
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The linear regression model fits a linear function to a set of data points [5]. The form of the function 
is: 

Y = β0 + β1*X1 + β2*X2 + … + βn*Xn 

 

where Y is the target variable and X1, X2, ... Xn are the predictor variables and  β1, β2, … βn are the 

coefficients that multiply the predictor variables.  β0 is constant. For example, given a CEO of a 
shoes company franchise who is considering different cities for opening a new store, in addition, the 

chain already has stores in various cities and the CEO has data for profits and populations from the 
cities.  In this scenario, the CEO can use this data to help at the selection of which city to expand 

next, by using linear regression to predict profits for the new store. 

 

3.1.2 Logistic Regression 

Logistic Regression is a regression algorithm that predicts the probability of occurrence of an event 

by fitting data to a logit function (logistic function).  Similar to many forms of regression analysis, 

Logistic Regression relies on using several predictor variables, which may be either numerical or 
categorical. For instance, the probability that a person may have a heart attack within a specified 

time period might be predicted based on features such as the person's age, sex and body mass 
index. This regression algorithm is frequently used in different scenarios like prediction of customer's 

propensity to purchase a product or cease a subscription in marketing applications and many others 

[6].  

Given p (x) the probability of occurrence of event x, formally, the logistic regression model is: 

log =
𝑝(𝑥)

1 − 𝑝(𝑥)
 

 

On the one hand, it is widely accepted that Logistic Regression has several advantages over linear 
regression [6]. For instance, Logistic Regression is more robust than linear regression since it does 

not assume linear relationship. As a consequence, it may handle nonlinear effects. On the other, it 
requires much more data to achieve stable and meaningful results.  

 

3.1.3 SVM Regression 

Support Vector Machines (SVM) is a supervised learning algorithm employed to analyse data and to 

recognize patterns, which is used in classification and regression problems. SVM is based on the 

notion of a hyperplane that separates two data classes by maximizing the margin between them. 
Therefore, SVM focuses on creating the largest possible distance between the separating hyperplane 

and the instances on either side of it. The literature has shown that SVM may reduce both the 
training and the expected generalisation error.  

SVR, SVM version for regression, maintains all the main features that characterise the maximal 

margin algorithm: a non-linear function is learned by a linear learning machine in a kernel-induced 
feature space, while the capacity of the system is controlled by a parameter that does not depend 

on the dimensionality of the space. In SVR, the basic idea is to map the data x into a high-
dimensional feature space F via a nonlinear mapping T and to employ linear regression in space F 

[7].  

In SVR, the objective is to estimate the functional dependence of a dependent variable y on a set of 
independent variables x. It is assumed, as in other regression problems, that the relationship 

between the independent and dependent variables is given by a deterministic function f plus the 
addition of some noise, as shown below: 

y = f(x) + 𝑛𝑜𝑖𝑠𝑒 

http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Regression_analysis
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Thus, the task involves finding a functional form for f that will lead to a correctly prediction of new 
cases. The SVR training process is accomplished through the sequential optimization of an error 

function. Depending on the definition of this error function, different types of SVM models can be 

recognized.  

In the web application, both SVR and SVM for classification, known as SVC, are provided. 

 

3.2 Clustering Algorithms 

Clustering techniques try to identify natural clusters of input data according to a similarity measure, 

for instance Euclidian distance. The members of the same cluster are more similar to each other than 
they are in comparison with members of other clusters. The goal of clustering analysis is to find high-

quality clusters such that the inter-cluster similarity is low and the intra-cluster similarity is high [2]. 
Among several clustering algorithms proposed in the literature, two algorithms are available in the 

web service. These algorithms are described in this section. 

 

3.2.1 K-Means 

K-Means is one of the simplest unsupervised learning algorithms applied to solve clustering 

problems. The procedure follows a simple and easy way to group a given data set into k clusters, 
where k is fixed a priori. First, k centroids are chosen, one for each cluster. These centroids should 

be placed in a cunning way because different location causes different results. So, the best choice is 

to place them as much as possible far away from each other [8].  

In the second step, each sample belonging to a given data set is associated to the nearest centroid. 

The nearest centroid of each sample is pointed out by means of similarity measures such as 
Euclidian distance. When no sample is pending, each group is then defined. After, k new centroids 

are re-calculated as barycentre’s of the clusters generated in the previous step. After the 

identification of these k new centroids, a new comparison is done between the same data set 
samples and the nearest new centroid. Thus, a loop is generated. The result of this loop may lead 

the k centroids change their location step by step until no more changes are detected. Then, the 
algorithm attains its convergence. 

The web application described in this deliverable also provides an alternativeversion of K-Means, 
called Mini Batch K-Means. This version uses mini-batches to reduce the computation time, while still 

attempting to optimise the same objective function. Mini-batches are subsets of the input data, 

randomly sampled in each training iteration. These mini-batches drastically reduce the amount of 

computation required to converge to a local solution. In contrast to other algorithms that reduce the 
convergence time of k-means, mini-batch k-means produces results that are generally only slightly 

worse than the standard algorithm [9]. 

 

3.2.2 MeanShift 

Another algorithm available in the web application is MeanShift. The MeanShift algorithm is a 

nonparametric clustering technique which does not require prior knowledge of the number of 
clusters, and does not constrain the shape of the clusters.  This algorithm considers feature space as 

an empirical probability density function.  

Given a set of samples, MeanShift considers them as sampled from the underlying probability 

density function. If clusters are presented in the feature space, then they will correspond to the 
mode of the probability density function. For each sample, MeanShift associates it with the nearby 

peak of a dataset probability density function. Thus, for a set of samples, MeanShift defines a 

window around it and computes the mean of each set. Then, it shifts the centre of the window to 
the mean and repeats the algorithm until it converges. After each iteration, it is considered that the 

window shifts to a denser region of the dataset. 

At the high level, we can specify MeanShift as follows:  
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 Fix a window around each sample.  

 Compute the mean of data within the window. 

 Shift the window to the mean and repeat till convergence. 

 

3.3 Classification Algorithms 

Handwritten digits recognition, business modeling, and credit analysis are examples of classification 

problems. As a type of supervised learning, a classification algorithm builds a model that is used to 
assign labels to the unknown examples. The data used to generate the models may include energy 

consumption information such as cost and time to allow the prediction of classes of behaviors. The 

input or training data for a supervised learning algorithm requires the presence of attributes to 
represent each training sample, as well the classes assigned to the training samples [11]. 

Three classification methods are provided in the web service: Decision Tree and Naïve Bayes, which 
are single-based classifier algorithms; and random forest – an ensemble-based classification method. 

 

3.3.2 Decision Tree 

Decision tree builds classification models in the form of a tree structure. It breaks down a dataset 

into smaller subsets while at the same time an associated decision tree is incrementally developed. 

Therefore, Decision tree uses a flowchart structure to evolve a set of data inside of some pre-defined 
classes, providing a description, categorization and generalization of a set of data. The final result is 

a tree with decision nodes and leaf nodes: decision nodes have two or more branches, while leaf 
nodes represent a classification or decision. The topmost decision node in a tree is called root node, 

which corresponds to the most relevant feature among all features used to describe each sample of 

the training dataset. Decision trees can handle both categorical and numerical features [14]. 
Decision Tree-based algorithms have the following main features [15]. 

 
 Are simple to understand and interpret. People are able to understand decision tree models 

after a brief explanation. 

 Provide important information even with little hard data. Important insights can be 

generated based on experts describing a situation and their preferences for outcomes. 

 Allow the addition of new possible scenarios. 

 Help determine worst, best and expected values for different scenarios. 

 Can be combined with other decision techniques. 

3.3.3 Naive Bayes 

Naive Bayes classifier is a probabilistic method  based on applying Bayes theorem with naive 
independence assumptions. The independence assumption leads a naive Bayes classifier to assume 

that the presence (or absence) of a particular feature of a class is unrelated to the presence (or 
absence) of any other feature. For instance, a user may be considered to be a highly energy 

consumer if he/she has air conditioner always working, several guests, and about 10 rooms in his/her 
home. Even if these features depend on each other or upon the existence of the other features, a 

naive Bayes classifier considers all of these properties to independently contribute to the probability 

that this person is highly energy consumer [16]. 
 

Naive Bayes classifiers can be trained in a supervised learning setting. In many practical applications, 
parameter estimation for Naive Bayes models uses the method of maximum likelihood. In addition, 

an advantage of the Naive Bayes classifier is that it requires a small amount of training data to 

estimate the parameters (means and variances of the variables) necessary for classification. Because 
independent variables are assumed, only the variances of the variables for each class need to be 

determined and not the entire covariance matrix. The web application has the Gaussian Naive Bayes 
type developed, this kind of naïve Bayes classifier may deal with continuous data. 

 

http://www.wikipedia.org/wiki/Classifier_(mathematics)
http://www.wikipedia.org/wiki/Bayes%27_theorem
http://www.wikipedia.org/wiki/Statistical_independence
http://www.wikipedia.org/wiki/Supervised_learning
http://www.wikipedia.org/wiki/Maximum_likelihood
http://www.wikipedia.org/wiki/Covariance_matrix
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3.3.1 Random Forest 

Classifier ensembles attempt to overcome the complex task of designing a robust, well suited 
individual classifier by combining the decisions of relatively simpler classifiers. It has been shown that 

significant performance improvements can be obtained by creating classifier ensembles and 

combining their classifier members’ outputs instead of using single classifiers. The construction of 
classifier ensembles may be performed by adopting different strategies. One possibility is varying the 

data, for instance using different data sources, different pre-processing methods, different sampling 
methods, distortion, etc. It is important to mention that the generation of an ensemble of classifiers 

involves the design of the classifiers members and the choice of the fusion function to combine their 
decisions.  

 

Even though several ensemble methods are reported in the literature, only one of the most popular 
ensemble construction methods is provided in the web service: Random Forest. This classifier 

ensemble consists of a collection or simple tree predictors, each capable of producing a response 
when presented with a set of predictor values. For classification problems, this response takes the 

form of a class membership which associates or classifies a set of independent predictor values with 

one of the categories present in the dependent variable [12].  
 

Random Forest is obtained by manipulating the original set of features available for training. The 
objective is to provide a partial view of the training dataset to each ensemble member, leading them 

to be different from each other. In addition, this ensemble method is also based on varying the 
training samples in order to generate different datasets for training the ensemble members. In this 

way, the classifier members will be accurate and different from each other to ensure performance 

improvement.  
 

In terms of combination function, given a set of simple trees and a set of random predictor variables, 
the Random Forest method defines a margin function that measures the extent to which the average 

number of votes for the correct class exceeds the average vote for any other class present in the 

dependent variable. This measure provides not only a convenient way of making predictions, but also 
a way of associating a confidence measure with those predictions. Random Forest has some features 

[13]: 
 

 It is unexcelled in accuracy among current algorithms. 

 It runs efficiently on large data bases. 

 It can handle thousands of input variables without variable deletion. 

 It gives estimates of what variables are important in the classification. 

 It generates an internal unbiased estimate of the generalization error as the forest building 

progresses. 

 It has an effective method for estimating missing data and maintains accuracy when a large 

proportion of the data are missing. 

 It has methods for balancing error in class population unbalanced data sets. 

 Prototypes are computed that give information about the relation between the variables and 

the classification. 

 It offers an experimental method for detecting variable interactions. 

 
Besides learning algorithms, the web service also provides some databases in order to help 

developers to better understand how the learning algorithms work. The databases are described in 
the next section. 

 

 
 

http://www.statsoft.com/textbook/classification-and-regression-trees/
http://www.statsoft.com/textbook/statistics-glossary/i.aspx?button=i#Independent vs. Dependent Variables
http://www.statsoft.com/textbook/statistics-glossary/i.aspx?button=i#Independent vs. Dependent Variables
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4. Database 

Two databases were chosen to show how the web application will be used. These databases were 

downloaded from [17], a very well-known site with machine learning databases. The goals of each 

database will be explained below. Then, a how-to is presented to show how the data from these 
databases have to be formatted to be used in the application. 

4.1 Energy Efficiency Data Set 

This dataset was created by Angeliki Xifara and processed by Athanasios Tsanas. The goal is to 
evaluate the heating cooling load requirements of buildings (that is, energy efficiency) as a function 

of building parameters.  

The energy analysis was performed using 12 different building shapes. They differ with respect to 

the glazing area, the glazing area distribution, and the orientation, amongst other parameters. 

Various settings were simulated as functions of the afore-mentioned characteristics to obtain 768 
building shapes.  

As mentioned above, the dataset comprises 768 samples and 8 features (denoted by X1...X8), 
aiming to predict two real valued responses (denoted by y1 and y2). Therefore, it is a dataset for 

regression algorithms, which can be converted to classification problems. 

Originally, the objective is to use the eight features to predict each of the two responses. The 
features are listed below: 

 X1 Relative Compactness  

 X2 Surface Area  

 X3 Wall Area  

 X4 Roof Area  

 X5 Overall Height  

 X6 Orientation  

 X7 Glazing Area  

 X8 Glazing Area Distribution 

 y1 Heating Load  

 y2 Cooling Load  

  

4.2 Individual Household Electric Power Consumption Data Set 

This dataset was created by Georges Hebrail, to measure the electric power consumption in one 

household with a one-minute sampling rate over a period of almost 4 years. Again, it is a regression 
problem. 

Different electrical quantities and some sub-metering values are available. The dataset contains 
2.075.259 measurements gathered between December 2006 and November 2010 (47 months). For 

the web service, we got information only from 2007. The dataset contains nine attributes, as listed 

below: 

 date: Date in format dd/mm/yyyy  

 time: time in format hh:mm:ss  

 global_active_power: household global minute-averaged active power (in kilowatt)  

 global_reactive_power: household global minute-averaged reactive power (in kilowatt)  

 voltage: minute-averaged voltage (in volt)  
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 global_intensity: household global minute-averaged current intensity (in ampere) 

 sub_metering_1: energy sub-metering No. 1 (in watt-hour of active energy). It corresponds 

to the kitchen, containing mainly a dishwasher, an oven and a microwave (hot plates are not 
electric but gas powered).  

 sub_metering_2: energy sub-metering No. 2 (in watt-hour of active energy). It corresponds 

to the laundry room, containing a washing-machine, a tumble-drier, a refrigerator and a 
light.  

 sub_metering_3: energy sub-metering No. 3 (in watt-hour of active energy). It corresponds 

to an electric water-heater and an air-conditioner. 

  

4.3 Database Format 

To be used in the web application, the databases have to follow a JSON pattern. Classification and 

regression algorithms follow the same pattern. On the other hand, clustering and the metrics of each 
algorithm have different forms. Frame 1 shows the JSON format for classification and regression 

input. 

 

                                          

Frame 1 JSON Input format for classification and regression algorithms. 

 

As can be observed in Frame 1, JSON format contains three keys explained below: 

 Data: This key represents the data that will be learned to generate the model. The data 
should be a matrix (𝑑𝑛𝑚), where n indicates the number of samples and m indicates the 

number of features. The features should be integers or float numbers.  

 Target: This key represents the target attributes corresponding to each line of the data 

matrix. The target attributes are used by the algorithm to map input to output in order to 

predict new data contained in the key predict. The array should contain integers or float 
numbers. The array length should be exactly the matrix line numbers, i.e. n.  

 Predict: This key has the unknown samples that will be used to make predictions. These 

data can be represented in an array or a matrix that contains either integers or float 

numbers. 

 

 

Frame 2 shows the results returned from applying the classification algorithms, with two keys: 

 Predicted: This key returns an array of data with integer or floats values and shows the 
prediction target assigned to each sample. The samples are collected from the predict key in 

Frame 1. 

{ 

  "data":   [[𝑑11, 𝑑12, 𝑑13, … , 𝑑1𝑚], 
   [𝑑21, 𝑑22, 𝑑23, … , 𝑑2𝑚], 

              [   ⋮   ,    ⋮,     ⋮  , ⋮  ,   ⋮    ], 
   [𝑑𝑛1, 𝑑𝑛2, 𝑑𝑛3, … , 𝑑𝑛𝑚]], 

  "target":  [𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛], 

  "predict": [[𝑝11, 𝑝12, 𝑝13, … , 𝑝1𝑚], 
      [𝑝21, 𝑝22, 𝑝23, … , 𝑝2𝑚], 

                 [   ⋮   ,    ⋮,     ⋮  , ⋮  ,   ⋮    ], 
                 [𝑝𝑛1, 𝑝𝑛2, 𝑝𝑛3, … , 𝑝𝑛𝑚]]] 

} 
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 Score: This key represents the accuracy on the given test data and returns a float value.   

 

 

                                          

Frame 2. Result from classification algorithms. 

 

Frame 3 shows the result returned from regression algorithms. The result has three keys: 

 Decision Function: This key returns an array of data with integer or float values and 

represents the decision function from the model used to predict confidence scores for 

samples.  

 Predicted: This key returns an array of data with integer or float values and shows the 

prediction of each sample. The samples are collected from the predict key in Frame 1 and 

the prediction is based on the data contained in the key decision function.  

 Score: This key represents the accuracy on the given test data and returns a float value.   

 

                                       
Frame 3. Result from regression algorithms. 

 

 

Frame 4. JSON Input format for clustering algorithms. 

 

Frame 4 shows the json format that covers the clustering algorithms (Kmeans, MeanShift, 
MiniBatchKMeans). The format contains two keys: 

{  

  "Predicted":  [𝑝11, 𝑝12, 𝑝13, … , 𝑝1𝑚], 

  "Score": [𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛] 

} 

{  

  "Decision Function":  [𝑑11, 𝑑12, 𝑑13, … , 𝑑1𝑚], 

   "Predicted":  [𝑝11, 𝑝12, 𝑝13, … , 𝑝1𝑚], 

  "Score": [𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛] 

} 

{  

  "data":   [[𝑑11, 𝑑12, 𝑑13, … , 𝑑1𝑚], 
   [𝑑21, 𝑑22, 𝑑23, … , 𝑑2𝑚], 

              [   ⋮   ,    ⋮,     ⋮  , ⋮  ,   ⋮    ], 
   [𝑑𝑛1, 𝑑𝑛2, 𝑑𝑛3, … , 𝑑𝑛𝑚]], 

 "predict":   [[𝑑11, 𝑑12, 𝑑13, … , 𝑑1𝑚], 
      [𝑑21, 𝑑22, 𝑑23, … , 𝑑2𝑚], 

                 [   ⋮   ,    ⋮,     ⋮  , ⋮  ,   ⋮    ], 
                 [𝑑𝑛1, 𝑑𝑛2, 𝑑𝑛3, … , 𝑑𝑛𝑚]] 

} 
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 Data: This key represents the data that will be trained to generate the model. The data 
should be a matrix (𝑑𝑛𝑚), again n indicates the number of samples and m indicates the 

number of features. The features should be integers or float numbers.   

 Predict: This key has the samples that will be used to make predictions (test set) to 

discover the clusters. These data can be represented in an array or a matrix that contains 

either integers or float numbers. 

 

Frame 5 shows the result returned from clustering algorithms. The result has two keys: 

 Predicted: This key returns an array of data with integer or float values and indicates 

which cluster the data from the predict key from Frame 4 belongs to. 

 Fit Predict: This key returns an array of data with integer or float values and indicates 

which cluster the data from the data key from Frame 4 belongs to. 

 

 

Frame 5. Result returned from clustering algorithms. 

 

                                        
Frame 6. JSON Input format for metrics algorithms. 

 

Frame 6 shows the format that covers the metrics algorithms. The format has four keys: 

 Y_predict: This key returns an array that contains either integer or floats numbers and 

represents the predicted labels that were returned by a classifier. 

  Y_true: This key represents the ground truth (correct) labels. These data can be 

represented as an array that contains either integers or float numbers. 

 t_binary: This key represents the true binary labels in binary label indicators. These data 

can be represented as an array that contains either integer or float numbers. 

  Y_scores: This key represents the target scores that can either be probability estimates of 

the positive class, confidence values, or binary decisions. These data can be represented as 

an array that contains either integers or float numbers. 

 

Metrics algorithms are divided into three groups. Each group is responsible for measuring the results 

of the classification, cluster and regression algorithms. Also, the algorithms do not use all the keys 
described in Frame 6. Table 1 shows the algorithms with their respective descriptions and keys used.    

 

{  

  "Predicted":  [𝑝11, 𝑝12, 𝑝13, … , 𝑝1𝑚], 

  "Fit Predict": [𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛] 

} 

{ 

"y_predict":    [𝑝1 , 𝑝2, 𝑝3, … , 𝑝𝑛], 

"y_true":        [𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛], 

"y_binary":    [𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛], 

"y_scores":    [𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛] 

} 
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Table 1. Metrics algorithms. 

 

                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The statistics algorithms also have a format that is depicted in frame 7 and has four keys: 

 Value: This key represents a value, which must be integer or float. 

 Vector, vector 2: These keys represent an array of data with integer or float values.    

 Matrix: This key represents the matrix that contains either integers or float numbers. 

 

Algorithms Description Keys 

Metrics for classification algorithms 

Accuracy Score In multilabel classification, this function computes 

subset accuracy: the set of labels predicted for a 
sample must exactly match the corresponding set 

of labels in y_true. 

y_true, 

y_predict 

Average Precision Score Compute average precision from prediction 
scores. This score corresponds to the area under 

the precision-recall curve. This implementation is 

restricted to the binary classification task or 
multilabel classification task. 

y_binary, 
y_scores 

Precision Score Compute the precision. The precision is intuitively 
the ability of the classifier not to label as positive 

a sample that is negative. The best value is 1 and 

the worst value is 0. 

y_true, 
y_predict 

Recall Score Compute the recall. The recall is intuitively the 

ability of the classifier to find all the positive 

samples. The best value is 1 and the worst value 
is 0. 

y_true, 

y_predict 

Roc Auc Score Compute Area Under the Curve from prediction 
scores. This implementation is restricted to the 

binary classification task or multilabel 

classification task in label indicator format. 

y_binary, 
y_scores 

Metrics for cluster algorithms 

Adjusted Rand Score Rand index adjusted for chance. The Rand Index 

computes a similarity measure between two 
clusters by considering all pairs of samples and 

counting pairs that are assigned in the same or in 

different clusters in the predicted and true 
clusters. 

y_true, 

y_scores 

Metrics for regression algorithms 

Mean Squared Error Mean squared error regression loss. y_true, 
y_predict 

R2 Score R^2 (coefficient of determination) regression 

score function. Best possible score is 1.0, lower 
values are worse. 

y_true, 

y_predict 

Explained Variance Score Explained variance regression score function.  
Best possible score is 1.0, lower values are worse. 

y_true, 
y_predict 
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Frame 7. Json Input format for statistic algorithms. 

 

Statistic algorithms are divided into three groups (orders, average and variances, correlating). The 
algorithms do not use all the keys described in Frame 7. Table 2 shows the algorithms with their 

respective descriptions and keys.    

 

Table 2. Statistic algorithms. 

Algorithms Description Keys 

Orders 

Minimum Return the minimum of an array or minimum 

along an axis. 

vector 

Maximum Return the maximum of an array or maximum 

along an axis. 

vector 

Nan Minimum Return minimum of an array or minimum along 
an axis, ignoring any NaNs. 

vector 

Nan Maximum Return the maximum of an array or maximum 

along an axis, ignoring any NaNs. 

vector 

Percentile Compute the qth percentile of the data along the 

specified axis. 

Matrix, 

value 

Correlating 

Correlation 

Coefficients 

Return correlation coefficients. vector 

Correlate Cross-correlation of two 1-dimensional 
sequences. 

Vector, 
Vector2 

Covariance 

Matrix 

Estimate a covariance matrix, given data. Matrix 

Average and Variances 

Average Compute the weighted average along the 

specified axis. 

vector 

Mean Compute the arithmetic mean along the specified 
axis. 

vector 

Median Compute the median along the specified axis. vector 

Standard 
Deviation 

Compute the standard deviation along the 
specified axis. 

vector 

Variance Compute the variance along the specified axis. vector 

 

{  

"value":    value, 

"vector ":    [𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛], 

"vector2":   [𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛], 

"matrix": [[𝑑11, 𝑑12, 𝑑13, … , 𝑑1𝑚], 
   [𝑑21, 𝑑22, 𝑑23, … , 𝑑2𝑚], 

              [   ⋮   ,    ⋮,     ⋮  , ⋮  ,   ⋮    ], 
              [𝑑𝑛1, 𝑑𝑛2, 𝑑𝑛3, … , 𝑑𝑛𝑚]] 

} 
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5. Web Application 

A web application1 was developed to provide regression, classification and clustering algorithms, in 

order to compare algorithms and to help users in understanding and choosing which algorithm fits in 

specific scenarios. Figure 1 show the initial interface.  

 

                    Figure 1: Web Application initial screen.  

As emphasized by Figure 1, users are able to choose between statistics, data mining, and 

optimization algorithms. This deliverable only focuses on the data mining algorithms. After choosing 

“Data Mining”, the user may select the category and the algorithm to be used. For instance, 
category Cluster and algorithm k-Means, as shown in Figure 2. 

 

           Figure 2: Web Application configuration. 

After the user has chosen a category and an algorithm, a database has to be selected in order to 
allow the process to continue. As discussed in Section 4, the database must have a specific format. 

Figure 3 shows a snapshot of the screen. When clicking on the “choose the database” button from 

Figure 3, users may execute the following tasks: 

1. Choose: Option that allows users to choose a database from their computer to upload it to 

the server. 

2. Upload: This option starts the upload process of the database. 

3. Cancel: Option that is used to cancel an upload. 

4. Select: This option is used if the database is already at the server and the user just wants 
to select it again. 

5. Download: Option used to download a database from the server to the computer. 

                                           
1
http://impressufam.cloudapp.net:8080/AlgorithmsTools 
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6. Delete: Option used to delete a database from the server. 

 

 
                                           Figure 3: Web Application database selection. 

After choosing these parameters, the users have to click on the “execute” button to start the 

execution of the algorithms and check the results. Next, an example of usage with real databases 
will be depicted. 

 

5.1 Classification Example 

To run the classification example, the decision tree algorithm was chosen along with the 

energy_efficient_cooling_load database. After selecting these parameters, the web application should 

looks like Figure 4. 
 

 
                                                 Figure 4: Configuring a classification algorithm in the web application. 
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The goal of this example is to use the energy_efficient_cooling_load to discover the class of a 

sample. As explained in section 4, this sample is added in the “predict” key. In this case, the 
“[0.62,808.50,367.50,220.50,3.50,5,0.40,5]” sample was added, where each number into the array 

represents respectively the attributes of the sample. By clicking on the application execute button, it 
will be shown the following result, as depicted at Figure 5. 

 

 
              Figure 5: Web Application classification result. 

 
This result shows that the sample “[0.62,808.50,367.50,220.50,3.50,5,0.40,5]” belongs to the class 

number 16 and that the algorithm score was 1.0. 

 

5.2 Clustering Example 

To run a clustering example, K-Means algorithm was chosen along with the 

energy_efficient_heating_load database. After selecting these parameters, the web application 
should looks like Figure 6. 

 

 
                                Figure 6: Configuring a clustering algorithm in the web application. 

 

The goal of this example is to use the energy_efficient_heating_load to discover the group of a 
sample. Again, as explained in section 4, this sample is added in the “predict” key, in this case the 

“[0.62,808.50,367.50,220.50,3.50,5,0.40,5]” sample was added, where each number into the array 
represents respectively the attributes of the sample. By selecting on the application execute button, 

the following result depicted in Figure 7 will be obtained. The “predict” key shows that the sample 

belongs to group 5 and the “fit_predict” key shows the groups from the other data that are 
configured in the “data” key. 
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                                                            Figure 7: Web Application clustering result. 

 

5.3 Regression Example 

In order to run a regression example, Linear Regression algorithm was chosen to learn 
household_power_consumption_sub_metering_1 database. After selecting these parameters, the 

web application should looks like Figure 8. 
 

 
                         Figure 8: Configuring a regression algorithm in the web application. 
 

The goal of this example is to use the household_power_consumption_sub_metering_1 to train data 

from January and to predict the values that should appear in February. The results are shown in the 
“predict” key, but they are too large to show in a figure. 

 

The examples provided in this section show how the learning algorithms provided in the web service 
may be used, as well as how the input databases must be formatted. 
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