
Document version: 1.0 Submission date: 25/03/2015

(FP7 614100)

D6.4 Implementation of Context Reasoning Engine

Published by the IMPReSS Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme
Objective ICT-2013.10.2 EU-Brazil research and development Cooperation

Target Outcome: b) Sustainable technologies for a Smarter Society

http://www.cnpq.br/index.htm

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 2 of 44 Submission date: 25/03/2015

Document control page

Document file: d6.4_implementation_context_reasoning_engine_v1.docx

Document version: 1.0

Document owner: Carlos Kamienski (UFABC)

Work package: WP6– Software System Engineering and Context Management

Task: Task 6.2, Task 6.3, Task 6.4

Deliverable type: P

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Carlos Kamienski 05/02/2015 Initial Version

0.4 Fabrizio Borelli and

Gabriela Biondi

05/03/2015 Most content added in all sections

0.9 Carlos Kamienski 22/03/2015 First version ready for internal review

1.0 Carlos Kamienski 24/03/2015 Final version after internal reviews

Internal review history:

Reviewed by Date Summary of comments

Thiago Rocha (UFAM) 23/03/2015 Approved with minor comments and

some corrections

Marc Jentsch (FIT) 24/03/2015 Approved with minor corrections and

comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the Impress Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular

purpose. The Members of the Impress Consortium shall not be held liable for errors contained herein or

direct, indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of

the information contained therein.

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 3 of 44 Submission date: 25/03/2015

Index:

1. Executive summary ... 4

2. Introduction .. 5
2.1 Purpose and context of this deliverable ... 5
2.2 Scope of this deliverable.. 5
2.3 Document Structure.. 5

3. Background ... 7
3.1 Drools ... 7
3.2 Esper .. 7
3.3 REST and RESTEasy .. 7
3.4 JBoss Application Server .. 8
3.5 EclipseLink (ORM) ... 8
3.6 MQTT .. 8
3.7 Arduino ... 9

4. Context Management Framework Architecture 10

5. Context Manager Implementation ... 13
5.1 Technologies .. 13
5.2 Context Storage – Relational Database Model .. 14
5.3 Drools: Guvnor and Expert .. 18
5.4 Esper: Complex Event Processing (Fusion)... 18
5.5 Context API ... 19
5.6 Context Manager Processing Steps ... 19

6. Case Study: University Classroom Prototype ... 21
6.1 Scenario .. 21
6.2 Sensors and Actuators .. 22
6.3 Fusion and Rules .. 23
6.4 Processing Steps: Lighting and Temperature .. 24

7. Conclusion ... 27

8. References .. 28

Appendix A – Script for the Context Relational Model................................. 29

Appendix B – Context Manager API .. 33

Appendix C –Log Tables.. 42

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 4 of 44 Submission date: 25/03/2015

1. Executive summary

IMPReSS aims at providing a Systems Development Platform (SDP) for enabling rapid development

of mixed critical complex systems involving Internet of Things and Services (IoTS). The
demonstration and evaluation of the IMPRESS platform will focus on energy efficiency systems

addressing the reduction of energy usage and CO2 footprint in public buildings. Application
developers will develop applications using the SDP for a variety of purposes, including energy

efficiency management.

In order to provide an efficient use of energy in buildings, the IMPReSS SDP will need to be context

aware, which means that it must know what happens inside the buildings so that opportunities to

save energy can be identified and effectively fulfilled. Context-aware systems are able to adapt their
operations according to the current conditions without any explicit user intervention. The key

components of any context-aware system are the context model and the context reasoning
approach, used in a particular context-aware management system. The architecture of the IMPReSS

Context Management framework is based on an object-oriented context modelling and a rule-based

context reasoning.

The work package 6 provides entities and templates for energy efficiency applications, which is

aimed at simplifying the developer’s tasks for modelling and programing the context-awareness
features in their applications. The design of context templates is characterized by context entities,

their relationships and their attributes, which play a key role in the architecture of the Context
Manager. The Context Manager encompasses all background software components that a typical

context-aware middleware offers to its users, such as context templates, context models, context

reasoning engine, and algorithms for sensor and data fusion. The specification of the Context
Manager has been presented in Deliverable D6.3 and this deliverable presents implementation

choices and details.

The implementation of the Context Manager uses Drools as the rule-based engine and Esper as a

complex event processing solution that provides data fusion features. The context modelling

approach is object-oriented but since object-oriented database did not come true, the Context
Manager stores entity templates into a relational database and the mapping between objects in the

programming language and tables in the database is made by EclipseLink, an Object Relational
Mapping (ORM) system. Also, the Context API has been developed using RESTful Web Services.

A case study has been designed, implemented and deployed covering a typical scenario involving a

university classroom, where lighting and temperature can be controlled automatically, in order to
evaluate the architecture of the Context Manager and its implementation. The main idea is to

demonstrate that we are able to manage the energy used in a place using the IMPReSS platform.
Even though this scenario is simple and straightforward with a small number of sensors and

actuators, the Context Manager is able to manage larger and more complex scenarios based on
different types of sensors, actuators and devices, which makes it different from current solutions,

which usually are carefully designed for controlling specific scenarios. In this scenario, the Context

Manager automatically controls lighting and temperature and displays power consumption. For both
situations, there are rules for adapting behavior and fusion criteria for preprocessing sensor data.

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 5 of 44 Submission date: 25/03/2015

2. Introduction

2.1 Purpose and context of this deliverable

The aim of the IMPRESS project is to provide a Systems Development Platform (SDP), which enables

rapid and cost effective development of mixed criticality complex systems involving Internet of

Things and Services (IoTS) and at the same time facilitates the interplay with users and external
systems. The IMPRESS development platform will be usable for any system intended to embrace a

smarter society. The demonstration and evaluation of the IMPRESS platform will focus on energy
efficiency systems addressing the reduction of energy usage and CO2 footprint in public buildings,

enhancing the intelligence of monitoring and control systems as well as stimulating user energy

awareness.

The IMPReSS project aims at solving the complexity of system development platform (SDP) by

providing a holistic approach that includes an Integrated Development Environment (IDE),
middleware components, and a deployment tool. The project’s results will be deployed in the Teatro

Amazonas Opera House as an attractive showcase to demonstrate the potential of a smart system

for reducing energy usage and CO2 footprint in an existing public building. Another deployment will
be in the campus of the Federal University of Pernambuco.

The present document is an output of Task 6.3 (Context Modelling Templates), whose main goal is
to define and implement a context modelling technique and associated context reasoning approach

to be used in the IMPReSS project. Deliverable D6.3 presented the Context Management Framework
Architecture and Design of Context Templates. Now, this document describes the technical details of

the implementation of the Context Manager, responsible for the context templates and context

reasoning in the IMPReSS architecture. As the core component of the context management
framework, the context reasoning engine (Context Manager) provides the context awareness

services to the application. It processes the context model provided by the application (and created
through the tools included in the framework) and constantly monitors the state of the smart entities.

It utilises the sensor and data fusion services in order to obtain the required information, and

detects the occurrence of situations (i.e., specified states of a given set of smart entities) defined
within the context model. The Context Manager is based on an object-oriented approach for context

modelling and a rule-base approach for context reasoning. Also, this document presents a prototype
case study representing a university classroom deployed using the Context Manager.

2.2 Scope of this deliverable

In order to allow applications to make efficient use of energy in buildings, the IMPReSS Platform
must provide context-aware management features, so that automatic decisions can be made based

on existing context information coming from a variety of sources, including physical sensors,

calendars and business rules. The implementation of the Context Manager is a key achievement for
the IMPReSS project, since it allows the IMPReSS platform to provide context-awareness features to

the applications generated from it.

This deliverable is aimed at providing a clear understanding the Context Manager focusing on

implementation details and choices.

2.3 Document Structure

The reminder of this document is organized in four chapters.

 Chapter 3 introduces the key technological platforms used in the implementation of the

Context Manager, such as Drools and Esper.

 Chapter 4 introduces the architecture for the Context Manager module of the IMPReSS

architecture, focusing on its main internal components and interactions with other

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 6 of 44 Submission date: 25/03/2015

modules and with external actors, such as IDE modules. This architecture has been

presented initially in Deliverable D6.3.

 Chapter 5 presents the main components, choices and details of the implementation of

the Context Manager.

 Chapter 6 depicts a case study based on a university classroom, which has been

prototyped and is used for demonstration purposes.

 Chapter 7 presents some final remarks and the next steps.

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 7 of 44 Submission date: 25/03/2015

3. Background

This section presents technologies and tools used for the development of the Context Manager.

3.1 Drools

Drools1 is a Business Rules Management System (BRMS) provided by JBoss2, i.e., a Rule Engine that

employs a rule-based approach to implement an expert system. Drools has been chosen for the core
context reasoning function of the Context Manager due to its large community, robustness and its

seamless integration with object-oriented programming languages, such as Java. Drools is a suite
composed of different modules:

 Drools Workbench: a web user interface for rule authoring and management, previously

called Guvnor.

 Drools Expert: the actual business rules engine

 Drools Fusion: a complex event processing tool

 jBPM: a Business Process Management (BPM) suite which provides a dual focus, making the

bridge between business analysts and developers

 OptaPlanner: a constraint satisfaction solver that optimizes business resource planning (i.e.

automated planning)

For the implementation of IMPReSS Context Manager, Drools Workbench (actually Guvnor) and
Expert has been used. Instead of Drools Fusion, Esper has been used as a Complex Event

Processing tool, because the former is newer and the latter is more stable and well-known. jBPM
and OptaPlanner have not been considered for the Context Manager because their key functions are

not required.

3.2 Esper

Esper3 is a component for enabling complex event processing (CEP) and event series analysis,
available for Java as Esper (used in the Context Manager) and for .NET as NEsper. It enables rapid

developments of applications that process large volumes of incoming real-time and historical
messages or events. Esper can filter, analyze, and fuse events in various ways, configurable through

an SQL-like Event Processing Language (EPL). In Esper, Fusion criteria are called streams.

In other words, Esper is a specialized tool for performing sensor data fusion for the Context

Manager. A different approach for fusion processing would be to build your own program. However,

since Esper is a stable and very powerful tool, it is the ideal solution for a large environment with
hundreds or thousands of sensors constantly flooding the Context Manager with huge amounts of

raw data. In such a scenario, developing your own programs to perform fusion would be like
reinventing the wheel.

3.3 REST and RESTEasy

A Service Oriented Architecture (SOA) employs “services” as the basic unit for the separation of
concerns in the development of computing systems (OASIS 2006). Services can be seen as the

means whereby consumers access providers’ capabilities. Among other interesting features, services

provide loosely coupled interaction between partners in a business process (or any other computing
activity). Services that implement SOA using web technologies are usually called Web Services.

1 http://www.drools.org
2 http://www.jboss.org
3 http://esper.codehaus.org

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 8 of 44 Submission date: 25/03/2015

There are two main approaches for implementing Web Services (Pautasso et. al 2008). SOAP

(Simple Object Access Protocol) is the most traditional approach, but due to its complexity (it is
based on XML) a lighter and modern approach has been increasingly adopted, called REST

(REpresentational State Transfer). REST was originally introduced as an architectural style for
building large-scale distributed hypermedia systems (Pautasso et. al 2008).

REST is a collection of architectural principles and constraints for the development of distributed
applications in the Web. It adopts the client/server paradigm, seeking simplicity and low coupling.

REST has gained widespread acceptance across the Web as a simpler alternative to SOAP Web

services. Applications conforming to the REST constraint style are usually called RESTful. RESTful
systems typically, but not always, communicate over the Hypertext Transfer Protocol with the

same HTTP verbs (GET, POST, PUT, DELETE) used by web browsers to retrieve web pages and send
data to remote servers.

RESTEasy4 is a JBoss project that provides various frameworks to help you build RESTful Web

Services and RESTful Java applications. It is a fully certified and portable implementation of the JAX-
RS specification. JAX-RS specification (Java API for RESTful Web Services) defines a set of APIs for

the development of Web Services, using the Java programming language based on the REST
architectural principles of (ORACLE 2012).

3.4 JBoss Application Server

JBoss Application Server 75, or simply AS 7, is a version of the JBoss Java open source Application
Server, a server widely used by application developers based on the Java EE platform. JBoss is

around since 1999, initially known as EJBoss or EJB Open Source Server, but due to legal reasons it

has been renamed to JBoss. Today it is one of the main Java application servers, competing with
Apache Tomcat. JBoss is distributed under GNU license and it is completely free and implemented

100% in Java.

For the Context Manager, the choice for JBoss AS 7 was straightforward since Drools runs over it.

3.5 EclipseLink (ORM)

An Object-Relational Mapping (ORM) system is a programming technique for converting data
between two different paradigms, namely an object-oriented language and a relational database. An

ORM may be considered a “virtual object database” that can be used within a programming
language, so that programmers may have the illusion that objects are stored directly into the

database as it was a true object database, whereas in practice a relational database is in use.

EclipseLink6 and Hibernate7 are two highly well-known ORMs, based on the Java Persistence API
(JPA). Via JPA the developer can map, store, update and retrieve data from relational databases to

Java objects and vice versa, i.e., it allows developers to work with object instead of with SQL
statements. JPA typically defines mapping metadata through annotations in the Java class. Actually,

the reference implementation of JPA is EclipseLink.

EclipseLink is the open source Eclipse Persistence Services Project from the Eclipse Foundation. The
software provides an extensible framework that allows Java developers to interact with various data

services, including databases and web services.

3.6 MQTT

MQTT8 is a protocol used in Internet of Things (IoT) scenarios, ideal for use in different situations,

especially in constrained environments with devices with limited resources such as sensors and

4 resteasy.jboss.org
5 http://jbossas.jboss.org
6 http://eclipse.org/eclipselink
7 http://hibernate.org
8 mqtt.org

http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/HTTP_verbs
http://en.wikipedia.org/wiki/Web_page
http://jsr311.dev.java.net/
http://jsr311.dev.java.net/

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 9 of 44 Submission date: 25/03/2015

actuators. These scenarios are usually called Machine-to-Machine (M2M). MQTT was originally

developed by IBM, and its name stands for MQ Telemetry Transport, but now it is a standard in
charge of OASIS (OASIS 2014). MQTT has a client/server model, where every sensor is a client and

connects to a server, known as a broker, over TCP. It is a publish/subscribe, extremely simple and
lightweight messaging protocol, designed for constrained devices and low-bandwidth, high-latency

or unreliable networks. The design principles are to minimize network bandwidth and device
resource requirements while also attempting to ensure reliability and some degree of assurance of

delivery.

The key features of MQTT may be summarized as:

 MQTT is message oriented and a broker intermediates the communication of constrained

devices with the software applications. Every message is a discrete chunk of data, opaque to

the broker.

 MQTT is based on a publish/subscribe approach, which provides one-to-many message

distribution and decoupling of applications. Every message is published to an address,

known as a topic and clients may subscribe to multiple topics. Every client subscribed to a

topic receives every message published to that topic.

 MQTT allows three levels of quality of service with increasing levels of delivery guarantees:

"at most once", "at least once" and "exactly once”

The broker is a highly demand component of MQTT architecture and therefore it plays an important
role in the communication in any M2M or IoT environment. Mosquitto9 is an open source (BSD

licensed) message broker that implements MQTT. The Context Manager uses Mosquitto.

3.7 Arduino

Arduino10 is a tool for making resource constrained computer for sensing and controlling the physical

world. It is an open-source physical computing platform based on a simple microcontroller board,
and a development environment for writing software for the board. Arduino can be used to develop

interactive objects, taking inputs from a variety of switches or sensors, and controlling a variety of

lights, motors, and other physical outputs. Arduino projects can be stand-alone, or they can
communicate with software running on a local server of in the cloud. Arduino boards can be

assembled by hand and multiple expansions (known as shields) may be coupled to a single Arduino
board.

Even though Arduino is a simple, easy and cheap platform for prototyping applications that require

communication with a variety of physical resources, skills are required for making it possible to
implement the intended features into a highly constrained platform. The first use case prototype

implementation of the Context Manager, running a university classroom use case uses Arduino for
interfacing with sensors and actuators. Since it is limited, next version may be based on a more

powerful platform, such as Raspberry Pi11.

9 mosquitto.org
10 www.arduino.cc
11 http://www.raspberrypi.org

http://mosquitto.org/COPYING.txt
http://mosquitto.org/COPYING.txt

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 10 of 44 Submission date: 25/03/2015

4. Context Management Framework Architecture

According the IMPReSS Software Architecture, introduced in IMPReSS Deliverable D2.2.1 (Kamienski
2014b), the Context Manager is a module of the IMPReSS Middleware in charge of providing

background software components that a typical context-aware middleware offers to its users, such
as context templates, context models, context reasoning engine, and algorithms for sensor and data

fusion. This section introduces the Context Management Framework Architecture, also known as

Context Manager, introduced in IMPReSS Deliverable D6.3 (Kamienski 2014c). The Context Manager
is based on object-oriented context modeling and rule-based context reasoning.

Figure 1 depicts the Context Manager Architecture and its relationships with other components of
the IMPReSS Architecture. It can be roughly divided into two main planes inside the IMPReSS

Middleware, namely control plane and event plane. This architecture also includes modules that are
in the IMPReSS Middleware Interface and in the Resource Adaptation Interface, according to Figure

2, where the Context API and Communication Proxy reside, respectively.

 Event Plane: it comprises the two main components that operate in real time, i.e. the fusion

and the reasoner module, receiving and processing data coming from sensors and sending
commands to actuators.

 Control Plane: it comprises modules for context template configuration, storage and

notification, which are needed for the features of the event plane to work properly.

 IMPReSS Middleware API: the key module in the IMPReSS Middleware API as far as context-

awareness is concerned is the Context API, but the interface to the Data Manager is also

represented, as Data Proxy and the Context Notification feature.

 Resource Adaptation Interface (RAI): this module encapsulates the communication with

physical and digital resources via the Communication Proxy.

														Fuser

 Context Storage
 Place | Subject

Resource | Fusion

 Action| Rule

 Activity | Notification

Resource
Adaptation

Interface

IMPReSS IDE

IMPReSS
Middleware API

IMPReSS
Middleware

 Resources

Control Plane

Event Plane

						Reasoner

Communica on	Proxy	

Reasoner	
Log	

Local	Data	
Storage	

Data		
Proxy	 Context API

Context	
No fier	

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 11 of 44 Submission date: 25/03/2015

Figure 1 – IMPReSS Context Manager Architecture

The IMPReSS Context Manager modules are:

 Context API: The Context API is part of the IMPReSS Middleware API and exposes an

interface, allowing other modules, both belonging to the IDE and Middleware, to interact
with the Context Manager. For instance, for CRUD (create, read, update, delete) operations

related to context templates. Through the Context API the entity templates are configured in
the Context Storage. Please notice that the Context Manager assumes it will be able to

successfully find and establish communication with Resources, i.e., sensors and actuators.
The Context Manager learns about Resources through the Context API used by the

application in the IMPReSS IDE. In turn, the application will learn about Resources through

the Resource Manager (section 3), which discovers them from the environment.

 Data Proxy: This module encapsulates the communication with a data storage and retrieval

module, either raw data coming from sensors or processed data produced by a fusion

operation. It is defined as a small stub module that hides the details of using the Data API
to the Context Manager, or alternatively it provides access to an internal Local Data Storage

in case communication with the Data Manager is not available.

 Local Data Storage: This module implements an internal data storage feature for situations

where using the Data Manager (section 3) is not possible or even desirable. It stores all data
coming from sensors and also data fused by the Context Manager. It is a local database for

making it possible to have prompt access to historical data.

 Context Storage: This module is responsible for storage and retrieval of context entity

templates, via the Context API. According to section 5, eight entities have been identified for

the Context Manager and are dealt with by the Context Storage, namely Subject, Resource,
Place, Fusion, Rule, Action, Activity and Notification.

 Reasoner: The Context Reasoner is the piece of software able to infer logical consequences

from a set of asserted facts, as introduced in section 4.3. Also according to section 6.1, the

IMPReSS Context Manager is based on an object-oriented model and a rule-based reasoning
approach. The Reasoner performs its function by reading entities from the Context Storage,

i.e. Entity Templates such as Rule, Place, Resource and Action. Having all entities, whenever
it is invoked with a set or parameters it searches the entire set of rules for a match, i.e., a

particular rule that matches the parameters and as a consequence will be executed. In some

situations the Reasoner may find two or more rules that match the parameters, i.e. there
may be a rule conflict. Whenever a conflict happens, the Reasoner must select only one rule

to be executed based on some conflict resolution mechanism. The Reasoner is invoked by
the Fuser whenever Fusion criteria are met. As a result of firing a rule, one or more actions

are performed and they usually refer to changing the configuration of devices or equipments
for dynamically adapting behavior, e.g. turning off an elevator or lowering the temperature

of an air conditioner. The Reasoner performs this task by sending command messages to

actuators through the Communication Proxy. The Reasoner can also receive historical data
from the Data Proxy that may be needed by some rules.

 Reasoner Log: This module stores all actions taken by the Reasoner, for notification and

auditing purposes.

 Context Notifier: Whenever an application requires a notification of certain actions (e.g.

turning on or off certain devices) taken as a result of the successful processing of a rule by

the Reasoner, it can configure the Notification entity template. The Context Notifier will

monitor all actions configured to be notified in the Notification template and send
notifications back to the application through the Context Notification feature inside the

Context API. Context Notification may be implemented using a mechanism based on
callback functions that are registered by the application when configuring the Notification

Entity Template.

 Fuser: This module is responsible for data fusion, i.e. a set of techniques that combine data

from multiple sources such as sensors and gather that information in order to achieve

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 12 of 44 Submission date: 25/03/2015

inferences, which will be more efficient and potentially more accurate than if they were

achieved by means of a single source. The Fuser is directly connected to the Communication
Proxy for receiving real time sensor data and when fusion criteria are met it activates the

Reasoner and stores the fused results in a data storage using the Data Proxy. Multiple fusion
criteria may be active concurrently and therefore this module plays a key role for the

performance of the Context Manager, because in a real scenario hundreds or thousands of
sensors may send data values with a high frequency. The Fuser reads the fusion criteria

from the Context Storage and that is how it finds out which data must be requested from

the Communication Proxy. Whenever a new fusion criteria is configured the Fuser registers
the corresponding resources to be monitored, e.g. sensors, in the Communication Proxy and

the latter starts sending data to the former.

 Communication Proxy: This module encapsulates the communication with resources, i.e.

sensors and actuators. It can be implemented as a small stub module for hiding the details

of both the Communication Manager and Resource Manager (Figure 2). Alternatively, it can

directly implement a communication protocol that interacts with the resources, for instance
using a machine-to-machine communication protocol typically used in the Internet of Things

(Borgia 2014). The Communication Proxy may also be represented as part of the IMPReSS
Middleware API but from the Context Manager point of view it is an internal middleware

interface. Also, it intermediates communication with lower level resources and thus it makes
it easier to understand the architecture and the way the modules interact with each other.

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 13 of 44 Submission date: 25/03/2015

5. Context Manager Implementation

This section describes the implementation choices, details and modelling used in the development of
the Context Manager.

5.1 Technologies

The implementation of the Context Manager Architecture described in section 4, based on an object-
oriented context modeling and rule-based context reasoning, is aimed at developing a preliminary

prototype for evaluating the adequateness of using different existing technologies. The
implementation guidelines shown in Figure 2 is a result of extensive research about existing

Complex Event Processing (Wu et al. 2006), Rule Engines (Sun et. al 2014), protocols for the

Internet of Things (Aztoria e. al 2010) and related technology.

Figure 2 –Implementation guidelines for IMPReSS Context Manager Architecture

The implementation of the Context Manager Architecture will be based on free or open-source

software systems. Some strong candidates for implementing the components of the Context
Manager are:

 Context API: RESTful Web Services (Pautasso et. al 2008), like the other middleware APIs.

 Data Proxy: a specially developed Java program that encapsulates communication with the

Data API (for accessing the Data Manager) or the Local Data Storage.

 Local Data Storage: the current version uses PostgreSQL12, a well-known Relational

Database Management System (RDBMS).

12 http://www.postgresql.org

														Esper
 (Fuser)	

Resource
Adaptation

Interface

IMPReSS IDE

IMPReSS
Middleware API

IMPReSS
Middleware

 Resources

Control Plane

Event Plane

						Drolls
 (Reasoner)	

Communica on	Manager	
MQTT	Broker	

(Communica on	Proxy)	

RDBMS	
(Reasoner	Log)	

RDBMS	
(Local	Data	
Storage)	

Java	
(Data	Proxy)	

REST
(Context	API)	

Java	
(No fier)	

EclipseLink
(ORM)	

RDBMS
(Context	Storage)	

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 14 of 44 Submission date: 25/03/2015

 Context Storage: any RDBMS with an Object-Relational Mapping (ORM) system, such as

EclipseLink13 or Hibernate14. The use of an ORM is needed because on the one hand data is
structured and therefore suitable for a RDBMS. On the other hand, the context modeling is

object-oriented, so that a mapping between both models is required. We used the ORM

EclipseLink together with PostgreSQL. EclipseLink is widely used and supported by a
community of developers and since the Eclipse IDE has been chosen, it makes the

configuration of EclipseLink simple and straightforward.

 Reasoner: Drools15 is a Rule Engine, which is classified as a Business Rules Management

System (BRMS)16. Two components have been evaluated for the Context Reasoner, Drools

Expert, a business rules engine and Drools Workbench (formerly known as Guvnor) a web

graphical interface for rule authoring and management.

 Reasoner Log: any RDBMS can be used, and this version is based on PostgreSQL

 Context Notifier: a specially developed Java program that must work together with the

Reasoner Log, either configuring triggers or polling the database for actions that must be

reported to the application.

 Fuser: Esper17 is a component for enabling complex event processing (CEP) and event series

analysis. It enables rapid developments of applications that process large volumes of

incoming real-time and historical messages or events. Esper can filter, analyze, and fuse
events in various ways, configurable through an SQL-like Event Processing Language (EPL).

In Esper, Fusion criteria are called streams.

 Communication Proxy: a specially developed Java program that encapsulates the

communication with resources, either the Communication Manager or a MQTT18 broker.

5.2 Context Storage – Relational Database Model

The Context Manager is based on an object-oriented modelling, since it easily integrates with

current programming languages, such as Java. However, when it comes to storing the objects in
main memory, the most efficient way currently in use is by converting them into a relational

database. This solution requires a relational database, PostgreSQL in the current version, a mapping
between objects represented in the programming language and tables in the database and an

efficient modeling of the database for representing the context entities templates.

We developed a relational modelling for storing entity templates, which operates in two categories:
1 - How to Operate; 2 – Operation Log. How-to and log are represented in blue and orange,

respectively, as shown in Figure 3.

Figure 3 – Layers where the relational data modelling operates

Tables belonging to the “how to” category are aimed at storing the entity templates, such as places,
sensors, actuators and other preferences. On the other hand, tables belonging to the “operation log”

13http://eclipse.org/eclipselink
14 http://hibernate.org
15 http://www.drools.org
16 http://www.drools.org
17 http://esper.codehaus.org
18 http://mqtt.org

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 15 of 44 Submission date: 25/03/2015

category store log information of all actions executed by the Context Manager, such as actions

executed by actuators, fusion outcomes, etc.

Figure 4 depicts the diagram that represents a relational model developed for the Context Manager.

In a relational model, each entity (table) is represented as a rectangle. Relationships between
entities are represented as continuous lines with symbols in their ends representing the type of

relationship, which in our case may be one-to-one/many or one-to-zero/one/many. Please notice
that entity PLACE, which stores all places of importance to the system, has self-relationship, because

a place may be located inside another place. For example, a “classroom” place is within a “corridor”

place, which in turn is within a “floor” place, which finally is within a “building” place. A self-
relationship is implemented by using a foreign key filled in with a value coming from a primary key

from the same table. Some tables may be play a temporary and internal role and may be substituted
when all modules of the IMPReSS architecture are integrated into the platform, because some data

types (entities) will be stored inside other modules of the IMPReSS platform. This relational model

has been implemented in PostgreSQL and the creation script can be found in Annex A.

Figure 4 – Context Manager Relational Model

The tables belonging to the Context Manager Contextual Model that store entities are presented

below.

 Place: stores Place entities

 Place-Type: stores types of places

 Resource: stores Resource entities

 Resource-Type: stores types of resources

 Resource-Log: stores all values gathered from sensors (a temporary table that will be

changed by a query to the Data Manager, responsible for storing sensor data)

 Resource-Fusion: relates resources to fusion criteria

 Fusion: stores Fusion entities

 Fusion-Log: logs fusion criteria applied and its outcomes

 Resource-Fusion-Log: log of activities for resource-fusion

 Action: stores Action entities

PLACE	

RESOURCE	

RESOURCE-
FUSION	

FUSION	

RESOURCE-
LOG	

FUSION-LOG	
RESOURCE-
FUSION-LOG	

RULE	

RULE-LOG	
FUSION-
RULE-LOG	

FUSION-RULE	

RESOURCE-
TYPE	

ACTION	

RESOURCE-
ACTION-TYPE	

RULE-
ACTION-LOG	

PLACE-TYPE	

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 16 of 44 Submission date: 25/03/2015

 Resource-Action-Type: stores types of actions

 Rule: stores Rule entities

 Rule-Log: logs rules that have been selected and executed

 Fusion-Rule-Log: relates fusion and rule logs, because when a fusion outcome is available it

fires the rule engine, which may (and is very likely to) execute a rule

 Rule-Action-Log: logs actions performed as a result of the application of a rule

In order to provide a clearer understanding about the way this data model works and the

relationship among entities, Figure 5 depicts examples of sample data for some tables. Examples of

Log Tables are depicted in Appendix C. Some observations:

 In Figure 5(b), place R808 is a classroom located in the 8th Floor

 In Figure 5(d), resource T1310 is a thermometer located in classroom R808

 In Figure 5(f), the same rule can be invoked by more than one fusion criteria

a)

b)

c)

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 17 of 44 Submission date: 25/03/2015

d)

e)

f)

g)

h)

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 18 of 44 Submission date: 25/03/2015

i)

j)

Figure 5 – Sample data for selected tables

5.3 Drools: Guvnor and Expert

Drools is a product provided by Red Hat composed of different modules, among which for the
IMPReSS Context Manager the Guvnor and Expert modules were used. Guvnor is executed by a

JBoss Application Server. Drools Guvnor is in charge of storing rules in a repository, which for the
Context Manager can be updated at any time without recompiling any source code or stopping the

application. This feature is in line with the concept of context-awareness, which aims at allowing

application to change behavior according to changes in the environment without human
intervention. Drools Expert is responsible for the reasoning of the rules. It runs within a Java

application and can be updated by Guvnor on the fly.

5.4 Esper: Complex Event Processing (Fusion)

Sensors usually send measured data to a server or broker, depending of the system architecture

under consideration. The amount of data that arrives at the broker/server at a given type can be
enormous, depending on the number of sensors and the frequency by which they are configure to

report the measured data. In such a scenario, it is common that repeated or noisy data is received.

The idea behind data fusion is to analyze sensor data and filter or pre-process them in order to
provide refined and summarized data to the rule reasoning engine. Thus, any application created by

the IMPReSS platform will fire a lower number of actions and consequently send a lower number of
messages to the broker, which in turn send them to the actuators. Also, fusion criteria can mix

different types of data coming from different sensors, thus yielding some high-level context
information out of low-level context data.

The IMPReSS Context Manager uses Esper for Fusion purposes. In Esper, Fusion criteria, called

streaming, look like SQL statements. Esper allows a variety of fusion criteria to be executed at the
same time. Also, Esper provides object-oriented features, which allows fusion criteria to be

integrated to the classes and objects written in Java for our Context Manager. As presented in
Figure 6, the Context Manager architecture has a pre-processing module that subscribes topics in

the MQTT broker and receives data coming from sensors. These data are treated and converted into

events before they are forwarded to Esper. When Esper receives these events, it analyzes them
according to fusion criteria, which are read from the entity repository, stored in a relational

database.

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 19 of 44 Submission date: 25/03/2015

5.5 Context API

In order to provide a uniform and standard interface for external access as well as to provide data
integrity to the Context Manager, all Create-Read-Update-Delete (CRUD) operations are performed

through a REST API. Basically, a REST API uses four methods: GET, DELETE, POST and PUT.

Appendix B contains a detailed list of all methods belonging to the Context Manager API.

Table 1 – Mapping between CRUD operation and REST Method

Operation Method

Create POST

Read GET

Update PUT

Delete DELETE

The Swagger framework is used to generate automatic documentation of the REST API developed

for the Context Manager of the IMPReSS platform. This framework is based on a Graphical User
Interface and provides searching operations and REST URLs.

5.6 Context Manager Processing Steps

In order to provide a better understanding of the interworking of the Context Manager components
(Figure 6), this section sheds some light into the data flow and processing steps involved in the

process of analyzing sensor data and sending commands to actuators. Figure 6 introduces the
processing steps and data flow for the Context Manager, based on the implementation guidelines

with software modules presented in Figure 2. Not all components are detailed here, but only those

that are in the critical path in the event plane. The sequence of steps is:

1. Sensors send measured data through the MQTT broker;

2. A preprocessor receives data values from the MQTT broker and adapts them for being
processed by Esper. Please notice that the preprocessor is part of the Fuser.

3. The preprocessed data is delivered to Esper;

4. Esper applies fusion criteria, using its Complex Event Processing engine.

5. Whenever an Esper triggers a result, it is delivered to Drools for searching rules to decide

actions to be taken;

6. Actions resulting of Drools rules go through a postprocessor and sent to MQTT;

7. Actions commanded by Drools are delivered to actuators to be enforced.

Fused data values produced by Esper are stored in the Data Storage and actions taken by Drools are
stored in the Reasoner Log. In addition to the data coming from sensors, Esper and Drools are

configured by data coming from entities stored in the Context Storage. All actions registered for
notifications are sent back to the application.

In section 6.4 we exemplify the processing steps and data flow for the Context Manager with two
examples, of controlling temperature and lighting.

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 20 of 44 Submission date: 25/03/2015

Figure 6 –Processing Steps and Data Flow for the Context Manager

Sensor		
			

	

MQTT	
Broker	

Pre-
Processing	

Esper	 Drools	

Post-
Processing	

MQTT	
Broker	

Actuator	
	
	

Data	
Storage	

Context	
Storage	

Reasoner	
Log	

No fier	

1	

2	

3	

4	

5	

6	

7	

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 21 of 44 Submission date: 25/03/2015

6. Case Study: University Classroom Prototype

A case study has been designed, implemented and deployed covering a typical scenario involving a
university classroom, where lighting and temperature can be controlled automatically, in order to

evaluate the architecture of the Context Manager and its implementation. The main idea is to
demonstrate that we are able to manage the energy used in a place using the IMPReSS platform.

Even though this scenario is simple and straightforward with a small number of sensors and

actuators, the Context Manager is able to manage larger and more complex scenarios based on
different types of sensors, actuators and devices, which makes it different from current solutions,

which usually are carefully designed for controlling specific scenarios.

6.1 Scenario

In this scenario, the Context Manager automatically controls lighting and temperature and displays

power consumption. It may be considered a mix of scenarios 2 (efficient use of the air conditioning
system) and 3 (efficient use of lighting), introduced in Deliverable D6.1 (Kamienski et. a. 2014a). For

both situations, there are rules for adapting behavior and fusion criteria for preprocessing sensor

data. This scenario contains eight sensors and six actuators. It is depicted in Figure 7 and the
communication of these resources with the Context Manager follows the sequence presented in

Figure 6. The main components of the scenario shown in Figure 7 are:

 Presence sensors (4): the classroom has four rows of desks and presence sensors identify

the presence of students in each row.

 Temperature sensors (2): the classroom has two thermometers, whose measures are

averaged by the Fusion component (Esper) for eventually changing the behavior of the
system.

 Lighting control sensor (1): this sensor is represented by an app running in a smartphone,

where the teacher can turn the lighting system into three modes: ON, OFF and AUTOMATIC.

The ON and OFF modes have priority over the AUTOMATIC mode, switching all lights on or
off. When in AUTOMATIC mode lights are turned on or off according to the presence

sensors.

 Consumption sensor (1): a consumption sensor sums up the power consumption of all

devices used in this scenario, i.e., lights and a fan.

 Lighting actuators (4): these actuators turn on and off individual lights for each row.

 Fan actuator (1): turns on and off the fan.

 Lighting control actuator (1): the same smartphone app emulating sensors also emulates an

actuator, used to switch the modes of the device.

 Fan (1): a cooler playing the role of an air conditioning system.

 LEDs (4): represent the lights for each row.

 Display (1): a tablet running an app displays information related to all sensors and the state

of the system, located in a place where should be an electronic whiteboard. The app is a UI

that collects information from the Context Manager through the Context API. The displays

present the values measured from of all sensors, percentage of power consumption (related
to the maximum) and average temperature. The display is important and should be present

in different places in smart buildings, for making available for everyone information about
how much energy has been saved by the use of an application generated by the IMPReSS

platform.

 Arduino and related circuits (not represented in in Figure 7): an Arduino board together with

other related circuits play the role of a customized controller for sensors and actuators.
Arduino connects to a MQTT Broker in order to send data measured by the sensors and

receive commands for the actuators.

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 22 of 44 Submission date: 25/03/2015

Figure 7 – University Classroom Prototype

6.2 Sensors and Actuators

Arduino works as a hub, connecting all physical sensors and actuators to a Mosquitto19 MQTT
Broker, which in turn connects to the Context Manager. Arduino is connected to sensors and with a

frequency that can be configured (say each 1 second) it sends data measured from each sensor to
the broker. Also, it receives commands from the Context Manager and performs the due actions in

the actuators. The Android (smartphone) app is not connected to the Arduino, because it is able to

run a MQTT agent itself. A specific protocol for sending and receiving messages through MQTT has
been developed. The data values measured by the sensors are sent to the Context Manager through

the MQTT broker and stored in the relational database according to section 5.2.

Table 2 shows all sensors and actuators used in this case study. It is important to highlight that

virtual sensors are also created. For example, the average temperature is considered to be a virtual

sensor.

Table 2 – Resources used in the prototype (sensors and actuators)

ID Description Description

1 PS1 Presence Sensor 1

2 PS2 Presence Sensor 2

3 PS3 Presence Sensor 3

4 PS4 Presence Sensor 4

5 TS1 Temperature Sensor 1

6 TS2 Temperature Sensor 2

7 US1 Usage Sensor 1

19 http://mosquitto.org

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 23 of 44 Submission date: 25/03/2015

8 LI1 Light Actuator 1

9 LI2 Light Actuator 2

10 LI3 Light Actuator 3

11 LI4 Light Actuator 4

12 AI4 Fan

13 AN1 Android Sensor 1

14 AN2 Android Actuator1

15 AVT T Average Temperature (virtual)

16 PRESENCE SUM Bit Sum Presence sensor (virtual)

For this case study three MQTT topics were created, namely impress/action, impress/demo and
impress/android, due to the low processing power of the Arduino. Topic impress/demo is used to

send sensor data to the Context Manager. Topic impress/action is used by the Context Manager to

send actions to the actuators and topic impress/android is used to send notifications to the lighting
control app executed in the smartphone.

6.3 Fusion and Rules

A typical scenario involving a university campus with various buildings will be based on hundreds or
thousands of sensors, which generate a huge amount of data that must be processed by the

Context Manager. A great deal of these data is repeated, noisy or they are not needed in its raw
form (like individual temperature data). This leads to the need to use specialized software for

preprocessing data before they are sent to the rule engine. This operation is known as data fusion,

which in our implementation is played by the Esper Complex Even Processing (CEP) software.

This scenario uses three fusion criteria:

 Fusion 1: compute the average of temperature data coming from the temperature sensors

every 10 seconds

 Fusion 2: capture the sum of presence sensor bits every 3 seconds, according to Table 3.

The fusion is a sum of the values (0 or 1) coming from the presence sensors, where sensor

1 (row 1) is the least significant and sensor 4 (row 4) is the most significant bit. According

to the sum of the bits coming from the sensors, we are able to pinpoint the rows where
there are students and those that are empty.

 Fusion 3: Filter Lighting Control Sensor when it is in AUTOMATIC mode, i.e., the output will

be the measured value only if it is ON or OFF

Table 3 – States of the sensors presence and corresponding actions

Sensor

1

Sensor 2 Sensor 3 Sensor 4 Sum Actions

0 0 0 0 0 Turn off all lights

0 0 0 1 1 Turn on light 1; Turn off lights 2, 3 e 4

0 0 1 0 2 Turn on lights 1 e 2; Turn off lights 3 e 4

0 0 1 1 3 Turn on lights 1 e 2; Turn off lights 3 e 4

0 1 0 0 4 Turn on lights 1, 2 e 3; Turn off light 4

0 1 0 1 5 Turn on lights 1, 2 e 3; Turn off light 4

0 1 1 0 6 Turn on lights 1, 2 e 3; Turn off light 4

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 24 of 44 Submission date: 25/03/2015

Sensor

1

Sensor 2 Sensor 3 Sensor 4 Sum Actions

0 1 1 1 7 Turn on lights 1, 2 e 3; Turn off light 4

1 0 0 0 8 Turn on lights 1, 2, 3 e 4;

1 0 0 1 9 Turn on lights 1, 2, 3 e 4;

1 0 1 0 10 Turn on lights 1, 2, 3 e 4;

1 0 1 1 11 Turn on lights 1, 2, 3 e 4;

1 1 0 0 12 Turn on lights 1, 2, 3 e 4;

1 1 0 1 13 Turn on lights 1, 2, 3 e 4;

1 1 1 0 14 Turn on lights 1, 2, 3 e 4;

1 1 1 1 15 Turn on lights 1, 2, 3 e 4;

However, fusion is not enough for changing behavior of the application on the fly upon changes on

the context. The key player for implementing this vision is the rule engine that receives data coming
from the fusion engine (Esper), analyzes a set of rules and decides whether actions should be taken.

Rules are stored in Drools Guvnor and processed by Drools Expert, which is the engine running over

JBoss AS 7. Whenever Esper produces a new result from applying a fusion criterion, the rule engine
is invoked and the whole set of rules is analyzed. For our scenario, 10 rules were created, which are

presented in Table 4.

Table 4 – Rules used in the Case Study

Rule Description Actions

1 Average temperature is higher than a threshold defined

by the administrator

Turn on fan

2 Average temperature is lower than a threshold defined
by the administrator

Turn off fan

3 Lighting control sensor is set to OFF mode Turn off all lights

4 Lighting control sensor is set to ON mode Turn on all lights

5 Sum of presence sensors = 1 Turn on light 1; Turn off

lights 2,3 e 4

6 Sum of presence sensors = 2 or 3 Turn on lights 1 e 2; Turn off
lights 3 e 4

7 Sum of presence sensors >= 4 and <= 7 Turn on lights 1, 2 e 3; Turn

off light 4

8 Sum of presence sensors >= 8 Turn on lights 1, 2, 3 e 4;

9 Sum of presence sensors = 0 and lighting control

sensor is in AUTOMATIC mode

Turn off all lights

10 Sum of presence sensors = 0 and lighting control
sensor is in ON or OFF modes

Switch to AUTOMATIC mode

6.4 Processing Steps: Lighting and Temperature

This section presents instantiations of the processing steps introduced in section 5.6 for lighting and
temperature control. Figure 9 depicts a scenario of automatic control of temperature. The data

values measured by a variety of sensors are sent, via MQTT, to the preprocessor that groups the

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 25 of 44 Submission date: 25/03/2015

measurements by Place and forward them to Esper, which in turn applies a Fusion criterion that

computes an average. Whenever a new average is available, Esper invokes Drools, that now
searches all Rules stored in its database that match the fused data received as a parameter, i.e. the

average temperature. Drools finds a rule for turning on the air conditioner in that Place. Finally, that
action is interpreted by the postprocessor and sent via MQTT as a message commanding an actuator

to turn on the air conditioner. Please notice that Esper is required in this scenario because hundreds
or thousands of fusion criteria may be processed simultaneously, as long as there are different

Places and resources eligible to be controlled by the IMPReSS Application.

Figure 9 – Processing steps and data flow – Temperature Control

Figure 10 depicts a scenario of automatic control of lighting in a given Place. The data flow and
processing steps are the same for the temperature scenario. The data values with light intensity are

measured by different sensors and send via MQTT to the preprocessor that groups the
measurements by Place and forward them to Esper, which in turn applies a Fusion criterion that

computes an average. Whenever a new average is available, Esper invokes Drools, that now

searches all Rules stored in its database that match the fused data received as a parameter, i.e. the
average temperature. Drools finds a rule for switching on the lights in that Place. Finally, that action

is interpreted by the postprocessor and sent via MQTT as a message commanding an actuator to
switch on the lights.

Sensor		
			

	

MQTT	
Broker	

Pre-
Processing	

Esper	 Drools	

Post-
Processing	

MQTT	
Broker	

Actuator	
	
	

TEMPERATURE	

Publishing	messages	on	a	topic	
	

Temperature	<-	24	SensorId	276	
Temperature	<-	23	SensorId	290	
Temperature	<-	24	SensorId	277	
Temperature	<-	25	SensorId	278	
Temperature	<-	22	SensorId	291	

Preprocessing	posts	of	the	topic	
	

Temperature	<-	24	SensorId	276	
Temperature	<-	23	SensorId	290	
Temperature	<-	24	SensorId	277	
Temperature	<-	25	SensorId	278	
Temperature	<-	22	SensorId	291	
	
	

	
	
	

Sending	preprocessed	messages	
	

Place	R244		
Temperature	<-	24	SensorId	276	
Temperature	<-	24	SensorId	277	

Temperature	<-	25	SensorId	278	
	

Place	R655	
Temperature	<-	23	SensorId	290	
Temperature	<-	22	SensorId	291	

Applying		fusion	criteria		
	

select avg(temperature) as avgT, * from

ImpressCEP(name=‘R244').win:length_batch(3)	
		

	
select avg(temperature) as avgT, * from

ImpressCEP(name=‘R655').win:length_batch(2)

	

Evalua ng	rules	
	
rule “TEMPERATURE R244"	
 when	
 n : Room(avgT > 24);	
 then	

 n.setTurnOnArCondicioando(true);	
end	

	
	
rule "TEMPERATURE R655"	

 when	
 n : Room(avgT > 23);	
 then	
 n.setTurnOnArCondicioando(true);	
end	

Publishing	messages	on	a	topic	
	

Air	condi oning	<-	ActuatorID	280	turn	on	

Performing	ac ons	
	
Air	Condi oning	in	Room	R244	connected	

1	

1	

2	

2	

3	

3	

4	

5	

6	

7	

5	

6	

7	

4	

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 26 of 44 Submission date: 25/03/2015

Figure 10 – Processing steps and data flow – Lighting Control

Publishing	messages	on	a	topic	
	
Luminosity	<-	478	SensorId	376	
Luminosity	<-	773	SensorId	390	
Luminosity	<-	468	SensorId	377	
Luminosity	<-	460	SensorId	378		
Luminosity	<-	772	SensorId	391	

Preprocessing	posts	of	the	topic	
	
Luminosity	<-	478	SensorId	376	
Luminosity	<-	773	SensorId	390	
Luminosity	<-	468	SensorId	377	
Luminosity	<-	460	SensorId	378		
Luminosity	<-	772	SensorId	391	
	

	
	
	
	

Sending	preprocessed	messages	to	Esper	
	
Place	R244		
Luminosity	<-	478	SensorId	376	
Luminosity	<-	468	SensorId	377	
Luminosity	<-	460	SensorId	378	
	

Place	R655	
Luminosity	<-	773	SensorId	390	
Luminosity	<-	772	SensorId	391	

Applying	fusion	criteria		
	
select	avg(luminosity)	as	avgL,	*	from	
ImpressCEP(name='R244').win:length_batch(3)	
	
	
select	avg(luminosity)	as	avgL,	*	from	
ImpressCEP(name='R655').win:length_batch(2)	
	
	

Evalua ng	rules	
	

rule “LIGHTING R244"	
 when	

 n : Room(avgL < 500); 	
 then	
 n.setTurnOnLight(true);	
end	
	

rule " LIGHTING R655"	
 when	
 n : Room(avgL < 500); 	
 then	
 n.setTurnOnLight(true);	

end	

Publishing	messages	on	a	topic	
	
Lamp	<-	ActuatorID	380	turn	on	

Performing	the	ac on	
	

Lamp	on	in	Room	R244	

1	

1	

2	

2	

3	

3	

4	

5	

6	

7	

5	

6	

7	

4	

Sensor		
			

	

MQTT	
Broker	

Pre-
Processing	

Esper	 Drools	

Post-
processing	

MQTT	
Broker	

Actuator	
	
	

LIGHTING	

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 27 of 44 Submission date: 25/03/2015

7. Conclusion

The IMPReSS System Development Platform (SDP) will need to be context aware in order to provide
an efficient use of energy in buildings, in such a way to adapt its operations to the current context

conditions without explicit user intervention. The key components of a context-aware system are its
context modelling and reasoning approaches, which in IMPReSS will be object-oriented and rule-

based respectively. The architecture of the Context Manager was presented in Deliverable D6.3,

which is divided into control and event planes inside the IMPReSS Middleware. It also includes
modules that are in the IMPReSS Middleware Interface and in the Resource Adaptation Interface.

This deliverable presents the implementation of the Context Manager, which uses Drools as the rule-
based engine and Esper as a Complex Event Processing solution that provides data fusion features.

The context modelling approach is object-oriented but since an object-oriented database did not
come true, the Context Manager stores entity templates into a relational database and the mapping

between objects in the programming language and tables in the database is made by EclipseLink, an

Object Relational Mapping (ORM) system. Also, the Context API has been developed using RESTful
Web Services.

A case study has been designed, implemented and deployed covering a typical scenario involving a
university classroom, where lighting and temperature can be controlled automatically, in order to

evaluate the architecture of the Context Manager and its implementation. This case study was

successfully developed and resulted in a prototype that can be used for evaluation and
demonstration purposes. Different challenges have been identified with the implementation of the

Context Manager and the case study, which are not in the mainstream of activities planned for
IMPReSS. Therefore, solutions for those challenges will be pursued by MSc and PhD students, since

applying context-awareness features to save energy in buildings has become a hot topic in the
modern world, and its importance will increasingly grow with the implementation of smart cities

concepts.

This deliverable is an important output of Task 6.3 (Context Modelling Templates), following another
previous output of the same task, which was the specification of the Context Management

Architecture. The next steps are a general improvement in the Context Manager for making it more
robust and scalable, which will be subject to an extensive performance analysis. Also, the Context

Manager and the Context API will influence the development of the context IDE module, or

management UI, that will be reported in Deliverable D6.5 (Implementation of Context Modelling
Tool and Templates).

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 28 of 44 Submission date: 25/03/2015

8. References

(Aztoria et. al 2010) Atzoria, L., Ierab, A., Morabitoc, G., "The Internet of Things: A survey",
Computer Networks, 54(15), pp. 2787-2805, October 2010.

(Borgia 2014) Borgia, E. (2014), The Internet of Things vision: Key features,

applications and open issues, Computer Communications, 54(1), pp. 1-

31, December 2014.
(Kamienski et. al 2014a) Kamienski, C., Borelli, F., Oliveira, G., Moretti, W., Pinheiro, I., Belati,

E. (2014), Analysis of Energy Efficiency Context and Sensor Fusion

Algorithm, IMPReSS Consortium, Deliverable D6.1, May 2014.

(Kamienski et. al 2014b) Kamienski, C., Borelli, F., Oliveira, G., Moretti, W., Pinheiro, I., Belati,
E. (2014), SDP Initial Architecture Report, IMPReSS Consortium,

Deliverable D2.2.1, February 2014.

(Kamienski et. al 2014c) Kamienski, C., Borelli, F., Oliveira, G., Moretti, W., Pinheiro, I., Belati,

E. (2014), Context Management Framework Architecture and Design of
Context Templates, IMPReSS Consortium, Deliverable D6.4, November

2014.

(OASIS 2006) OASIS, “Reference Model for Service Oriented Architecture 1.0”,
October 2006

(OASIS 2014) MQTT Version 3.1.1, OASIS Standard, October 2014.

(ORACLE 2012) ORACLE. JAX-RS: Java API for RESTful

Web Services - Version 2.0 Public Review

(Second Edition).
(Pautasso et. al 2008) Pautasso, C., Zimmermann. O., Leymann, F., (2008), Restful Web

Services vs. "Big" Web Services: Making the Right Architectural
Decision, 17th international conference on World Wide Web (WWW

2008), pp. 805-814, 2008.

(Pautasso et. al 2008) Pautasso, C., Zimmermann, O., Leymann, F., Restful web services vs.

"big"' web services: making the right architectural decision, WWW

2008.

(Pramudianto 2014) Pramudianto, F., (2014), Implementation of Sensor and Data Fusion
Module, IMPReSS Consortium, Deliverable D6.3, September 2014.

(Proctor 2012) Proctor, M. (2012), Drools: a rule engine for complex event processing,

4th international conference on Applications of Graph Transformations
with Industrial Relevance, 2012.

(Sun et. al 2014) Sun, Y., Wu, T.-Y., Zhao, G., Guizani, M. (2014), Efficient Rule Engine
for Smart Building Systems, IEEE Transactions on Computer, 99, 2014.

(Wu et al. 2006) Wu, E., Diao, Y., Rizvi, S. (2006), High-performance complex event

processing over streams, ACM SIGMOD 2006, p. 407-418

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 29 of 44 Submission date: 25/03/2015

Appendix A – Script for the Context Relational Model

CREATE TABLE type_place(

 id_type_place bigserial NOT NULL PRIMARY KEY,

 description text NOT NULL

);

CREATE TABLE place(

 id_place bigserial NOT NULL PRIMARY KEY,

 description text NOT NULL,

 id_type_place_fk bigint,

 CONSTRAINT id_type_place_fk FOREIGN KEY (id_type_place_fk) REFERENCES
type_place(id_type_place),

 id_place_fk bigint,

 CONSTRAINT id_place_fk FOREIGN KEY (id_place_fk) REFERENCES place(id_place)

);

CREATE TABLE type_resource(

 id_type_resource bigserial NOT NULL PRIMARY KEY,

 description text NOT NULL,

 sensor_0_actuator_1 int NOT NULL

);

CREATE TABLE resource(

 id_resource bigserial NOT NULL PRIMARY KEY,

 description text NOT NULL,

 id_type_resource_fk bigint,

 CONSTRAINT id_type_resource_fk FOREIGN KEY (id_type_resource_fk) REFERENCES

type_resource(id_type_resource),

 id_place_fk bigint,

 CONSTRAINT id_place_fk FOREIGN KEY (id_place_fk) REFERENCES place(id_place)

);

CREATE TABLE log_resource(

 id_log_resource bigserial NOT NULL PRIMARY KEY,

 id_resource_fk bigint,

 CONSTRAINT id_resource_fk FOREIGN KEY (id_resource_fk) REFERENCES
resource(id_resource),

 log_resource_value text NOT NULL, /* value para log_resource_value */

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 30 of 44 Submission date: 25/03/2015

 creation_date timestamp NOT NULL /* timestamp para creation_date */

);

CREATE TABLE fusion(

 id_fusion bigserial NOT NULL PRIMARY KEY,

 fusion_text text NOT NULL /* text para fusion_text */

);

CREATE TABLE log_fusion(

 id_log_fusion bigserial NOT NULL PRIMARY KEY,

 id_fusion_fk bigint,

 CONSTRAINT id_fusion_fk FOREIGN KEY (id_fusion_fk) REFERENCES fusion(id_fusion),

 log_fusion_value text NOT NULL, /* value para log_fusion_value */

 creation_date timestamp NOT NULL /* timestamp para creation_date */

);

CREATE TABLE resource_fusion(

 id_resource_fusion bigserial NOT NULL PRIMARY KEY,

 id_fusion_fk bigint,

 CONSTRAINT id_fusion_fk FOREIGN KEY (id_fusion_fk) REFERENCES fusion(id_fusion),

 id_resource_fk bigint,

 CONSTRAINT id_resource_fk FOREIGN KEY (id_resource_fk) REFERENCES

resource(id_resource)

);

CREATE TABLE type_rsc_actions(

 id_type_rsc_actions bigserial NOT NULL PRIMARY KEY,

 id_type_resource_fk bigint,

 CONSTRAINT id_type_resource_fk FOREIGN KEY (id_type_resource_fk)

REFERENCES type_resource(id_type_resource),

 type_rsc_actions_text text NOT NULL /* text para type_rsc_actions */

);

CREATE TABLE log_rsc_fusion(

 id_log_rsc_fusion bigserial NOT NULL PRIMARY KEY,

 id_log_fusion_fk bigint,

 CONSTRAINT id_log_fusion_fk FOREIGN KEY (id_log_fusion_fk) REFERENCES

log_fusion(id_log_fusion),

 id_log_resource_fk bigint,

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 31 of 44 Submission date: 25/03/2015

 CONSTRAINT id_log_resource_fk FOREIGN KEY (id_log_resource_fk) REFERENCES

log_resource(id_log_resource)

);

CREATE TABLE rules(

 id_rules bigserial NOT NULL PRIMARY KEY,

 rules_text text NOT NULL /* text para rules_text */

);

CREATE TABLE log_rules(

 id_log_rules bigserial NOT NULL PRIMARY KEY,

 id_rules_fk bigint,

 CONSTRAINT id_rules_fk FOREIGN KEY (id_rules_fk) REFERENCES rules(id_rules),

 creation_date timestamp NOT NULL /* timestamp para creation_date */

);

CREATE TABLE fusion_rules(

 id_fusion_rules bigserial NOT NULL PRIMARY KEY,

 id_fusion_fk bigint,

 CONSTRAINT id_fusion_fk FOREIGN KEY (id_fusion_fk) REFERENCES fusion(id_fusion),

 id_rules_fk bigint,

 CONSTRAINT id_rules_fk FOREIGN KEY (id_rules_fk) REFERENCES rules(id_rules)

);

CREATE TABLE log_fusion_rules(

 id_log_fusion_rules bigserial NOT NULL PRIMARY KEY,

 id_fusion_rules_fk bigint,

 CONSTRAINT id_fusion_rules_fk FOREIGN KEY (id_fusion_rules_fk) REFERENCES
fusion_rules(id_fusion_rules),

 creation_date timestamp NOT NULL /* timestamp para creation_date */

);

CREATE TABLE rules_actions(

 id_rules_actions bigserial NOT NULL PRIMARY KEY,

 id_rules_fk bigint,

 CONSTRAINT id_rules_fk FOREIGN KEY (id_rules_fk) REFERENCES rules(id_rules),

 id_resource_fk bigint,

 CONSTRAINT id_resource_fk FOREIGN KEY (id_resource_fk) REFERENCES
resource(id_resource),

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 32 of 44 Submission date: 25/03/2015

 id_type_rsc_actions_fk bigint,

 CONSTRAINT id_type_rsc_actions_fk FOREIGN KEY (id_type_rsc_actions_fk) REFERENCES
type_rsc_actions(id_type_rsc_actions)

);

CREATE TABLE log_rules_actions(

 id_log_rules_actions bigserial NOT NULL PRIMARY KEY,

 id_rules_fk bigint,

 CONSTRAINT id_rules_fk FOREIGN KEY (id_rules_fk) REFERENCES rules(id_rules),

id_type_rsc_actions_fk bigint,

 CONSTRAINT id_type_rsc_actions_fk FOREIGN KEY (id_type_rsc_actions_fk) REFERENCES
type_rsc_actions(id_type_rsc_actions),

id_resource_fk bigint,

 CONSTRAINT id_resource_fk FOREIGN KEY (id_resource_fk) REFERENCES
resource(id_resource),

creation_date timestamp NOT NULL /* timestamp para creation_date */

);

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 33 of 44 Submission date: 25/03/2015

Appendix B – Context Manager API

URLID Table Method Description

http://localhost:8080/restapi/type
place-api/get/id=all

place-type GET Returns place_type_id and description of all
registers

http://localhost:8080/restapi/type
place-api/get/id=n

place-type GET Returns description of register place_type_id =
n;

http://localhost:8080/restapi/type
place-api/get/description=x

place-type GET Returns place_type_id of register description =
x;

http://localhost:8080/restapi/type
place-api/delete/id=all

place-type DELETE Delete all registers;

http://localhost:8080/restapi/type
place-api/delete/id=n

place-type DELETE Delete register with place_type_id = n;

http://localhost:8080/restapi/type
place-api/delete/description=x

place-type DELETE Delete all registers with description = x;

http://localhost:8080/restapi/type
place-api/post/description=x

place-type POST Insert a new register with description = x;

http://localhost:8080/restapi/type
place-api/put/id=n/description=x

place-type PUT Update register place_type_id = n with
description = x

http://localhost:8080/restapi/type
resource-api/get/id=all

resource-type GET Returns resource_type_id, description and
sensor_0_actuator_1 of registers;

http://localhost:8080/restapi/type
resource-api/get/id=n

resource-type GET Returns description and sensor_0_actuator_1
of register with resource_type_id = n;

http://localhost:8080/restapi/type
resource-api/get/description=x

resource-type GET Returns resource_type_id and
sensor_0_actuator_1 of register with

description = x;

http://localhost:8080/restapi/type
resource-api/get/sensor=x

resource-type GET Returns resource_type_id and description of all
registers with sensor_0_actuator_1 = x;

http://localhost:8080/restapi/type
resource-api/delete/id=all

resource-type DELETE Delete all registers;

http://localhost:8080/restapi/type
resource-api/delete/id=n

resource-type DELETE Delete register with resource_type_id = n;

http://localhost:8080/restapi/type
resource-api/delete/description=x

resource-type DELETE Delete all registers with description = x;

http://localhost:8080/restapi/type
resource-api/delete/sensor=x

resource-type DELETE Delete all registers with sensor_0_actuator_1 =
x;

http://localhost:8080/restapi/type
resource-

api/post/description=x/sensor=y

resource-type POST Insert a new register with description = x and
sensor_0_actuador_1 = y;

http://localhost:8080/restapi/type
resource-

api/put/id=n/description=x/sensor
=y

resource-type PUT Update register resource_type_id = n with
description = x and sensor_0_actuador_1 = y;

URLID Table Method Description

http://localhost:8080/restapi/type
rscactions-api/get/id=all

resource-action-
type

GET Returns resource_action_type_id,
resource_type_id and resource-action-

type_text of all registers;

http://localhost:8080/restapi/type
rscactions-api/get/id=n

resource-action-
type

GET Returns resource_type_id and text of register
with resource_action_type_id = n;

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 34 of 44 Submission date: 25/03/2015

http://localhost:8080/restapi/type
rscactions-api/get/text=x

resource-action-
type

GET Returns resource_action_type_id and
resource_type_id of register with

resource_action_type_id = x;

http://localhost:8080/restapi/type
rscactions-api/get/type=x

resource-action-
type

GET Returns resource_action_type_id and text of
register with resource_type_id = x;

http://localhost:8080/restapi/type
rscactions-api/delete/id=all

resource-action-
type

DELETE Delete all registers;

http://localhost:8080/restapi/type
rscactions-api/delete/id=n

resource-action-
type

DELETE Delete register with resource_action_type_id
 = n;

http://localhost:8080/restapi/type
rscactions-api/delete/text=x

resource-action-
type

DELETE Delete all registers with
resource_action_type_id = x;

http://localhost:8080/restapi/type
rscactions-api/delete/type=x

resource-action-
type

DELETE Delete all registers with resource_type_id = x;

http://localhost:8080/restapi/type
rscactions-

api/post/type=x/action=y

resource-action-
type

POST Insert a new register with resource_type_id = x
and text = y;

http://localhost:8080/restapi/type
rscactions-

api/put/id=n/type=x/action=y

resource-action-
type

PUT Update register resource_action_type_id = n
with resource_type_id = x and text = y;

URLID Table Method Description

http://localhost:8080/restapi/fusi
on-api/get/id=all

fusion GET Returns fusion_id and text of all registers;

http://localhost:8080/restapi/fusi
on-api/get/id=n

fusion GET Returns fusion_text of register with fusion_id =
n;

http://localhost:8080/restapi/fusi
on-api/get/text=x

fusion GET Returns fusion_id of register with text = x;

http://localhost:8080/restapi/fusi
on-api/delete/id=all

fusion DELETE Delete all registers;

http://localhost:8080/restapi/fusi
on-api/delete/id=n

fusion DELETE Delete register with fusion_id = n;

http://localhost:8080/restapi/fusi
on-api/delete/text=x

fusion DELETE Delete all registers with fusion_text = x;

http://localhost:8080/restapi/fusi
on-api/post/text=x

fusion POST Insert a new register with fusion_text = x;

http://localhost:8080/restapi/fusi
on-api/put/id=n/text=x

fusion PUT Update register fusion_id = n with de
fusion_text = x;

URLID Table Method Description

http://localhost:8080/restapi/rule
s-api/get/id=all

rules GET Returns rules_id and text of all registers;

http://localhost:8080/restapi/rule
s-api/get/id=n

rules GET Returns rules_text of register with rules_id = n;

http://localhost:8080/restapi/rule
s-api/get/text=x

rules GET Returns rules_id of register with rules_text = x;

http://localhost:8080/restapi/rule
s-api/delete/id=all

rules DELETE Delete all registers;

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 35 of 44 Submission date: 25/03/2015

http://localhost:8080/restapi/rule
s-api/delete/id=n

rules DELETE Delete register with rules_id = n;

http://localhost:8080/restapi/rule
s-api/delete/text=x

rules DELETE Delete all registers with rules_text = x;

http://localhost:8080/restapi/rule
s-api/post/text=x

rules POST Insert a new register with rules_text = x;

http://localhost:8080/restapi/rule
s-api/put/id=n/text=x

rules PUT Update register rules_id = n with de rules_text
= x;

URLID Table Method Description

http://localhost:8080/restapi/plac
e-api/get/id=all

place GET Returns place_id, description, place_type_id
and place_id(fk) of all registers;

http://localhost:8080/restapi/plac
e-api/get/id=n

place GET Returns description, place_type_id and
place_id(fk) of register with resource_type_id =

n;

http://localhost:8080/restapi/plac
e-api/get/description=x

place GET Returns place_id, place_type_id and
place_id(fk) of register with description = x;

http://localhost:8080/restapi/plac
e-api/get/type=x

place GET Returns place_id, description and place_id(fk)
of all registers with place_type_id = x;

http://localhost:8080/restapi/plac
e-api/get/idfk=n

place GET Returns place_id, place_type_id and
description of all registers with place_id (fk) =

n;

http://localhost:8080/restapi/plac
e-api/delete/id=all

place DELETE Delete all registers;

http://localhost:8080/restapi/plac
e-api/delete/id=n

place DELETE Delete register with place_id = n;

http://localhost:8080/restapi/plac
e-api/delete/description=x

place DELETE Delete all registers with description = x;

http://localhost:8080/restapi/plac
e-api/delete/type=x

place DELETE Delete all registers with place_type_id = x;

http://localhost:8080/restapi/plac
e-api/delete/idfk=n

place DELETE Delete all registers with place_id (fk) = n;

http://localhost:8080/restapi/plac
e-

api/post/description=x/type=y/idf
k=z

place POST Insert a new register with description = x,
place_type_id = y and place_id (fk) = z;

http://localhost:8080/restapi/plac
e-

api/put/id=n/description=x/type=
y/idfk=z

place PUT Update register place_id = n with description =
x, place_type_id and place_id (fk) = z;

URLID Table Method Description

http://localhost:8080/restapi/reso
urce-api/get/id=all

resource GET Returns resource_id, description,
resource_type_id and place_id(fk) of all

registers;

http://localhost:8080/restapi/reso
urce-api/get/id=n

resource GET Returns description, place_type_id and
place_id(fk) of register with resource_id = n;

http://localhost:8080/restapi/reso
urce-api/get/description=x

resource GET Returns resource_id, place_type_id and
place_id(fk) of register with description = x;

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 36 of 44 Submission date: 25/03/2015

http://localhost:8080/restapi/reso
urce-api/get/type=x

resource GET Returns resource_id, description and
place_id(fk) of all registers with

resource_type_id = x;

http://localhost:8080/restapi/reso
urce-api/get/place=p

resource GET Returns resource_id, resource_type_id and
description of all registers with place_id (fk) =

n;

http://localhost:8080/restapi/reso
urce-api/delete/id=all

resource DELETE Delete all registers;

http://localhost:8080/restapi/reso
urce-api/delete/id=n

resource DELETE Delete register with resource_id = n;

http://localhost:8080/restapi/reso
urce-api/delete/description=x

resource DELETE Delete all registers with description = x;

http://localhost:8080/restapi/reso
urce-api/delete/type=x

resource DELETE Delete all registers with resource_type_id = x;

http://localhost:8080/restapi/reso
urce-api/delete/idfk=n

resource DELETE Delete all registers with place_id (fk) = n;

http://localhost:8080/restapi/reso
urce-

api/post/description=x/type=y/idf
k=z

resource POST Insert a new register with description = x,
resource_type_id = y and place_id (fk) = z;

http://localhost:8080/restapi/reso
urce-

api/put/id=n/description=x/type=
y/idfk=z

resource PUT Update register place_id = n with description =
x, resource_type_id and place_id (fk) = z;

URLID Table Method Description

http://localhost:8080/restapi/reso
urce-fusion-api/get/id=all

resource-fusion GET Returns resource_fusion_id, fusion_id and
resource_id of all registers;

http://localhost:8080/restapi/reso
urce-fusion-api/get/id=n

resource-fusion GET Returns fusion_id and resource_id of register
with resource_fusion_id = n;

http://localhost:8080/restapi/reso
urce-fusion-api/get/fusion=x

resource-fusion GET Returns resource_fusion_id and resource_id of
all registers with fusion_id = x;

http://localhost:8080/restapi/reso
urce-fusion-api/get/resource=x

resource-fusion GET Returns resource_fusion_id and fusion_id of all
registers with resource_id = x;

http://localhost:8080/restapi/reso
urce-fusion-api/delete/id=all

resource-fusion DELETE Delete all registers;

http://localhost:8080/restapi/reso
urce-fusion-api/delete/id=n

resource-fusion DELETE Delete register with resource_fusion_id = n;

http://localhost:8080/restapi/reso
urce-fusion-api/delete/fusion=x

resource-fusion DELETE Delete all registers with fusion_id = x;

http://localhost:8080/restapi/reso
urce-fusion-api/delete/resource=x

resource-fusion DELETE Delete all registers with resource_id = x;

http://localhost:8080/restapi/reso
urce-fusion-

api/post/fusion=x/resource=y

resource-fusion POST Insert a new register with fusion_id = x and
resource_id = y;

http://localhost:8080/restapi/reso
urce-fusion-

api/put/id=n/fusion=y/resource=z

resource-fusion PUT Update register resource_fusion_id = n with de
fusion_id = x and resource_id = z;

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 37 of 44 Submission date: 25/03/2015

URLID Table Method Description

http://localhost:8080/restapi/fusi
on-rules-api/get/id=all

fusion-rule GET Returns fusion_rule_id, fusion_id and rules_id
of all registers;

http://localhost:8080/restapi/fusi
on-rules-api/get/id=n

fusion-rule GET Returns fusion_id and rules_id of register with
fusion_rule_id = n;

http://localhost:8080/restapi/fusi
on-rules-api/get/fusion=x

fusion-rule GET Returns fusion_rule_id and rules_id of all
registers with fusion_id = x;

http://localhost:8080/restapi/fusi
on-rules-api/get/rules=x

fusion-rule GET Returns fusion_rule_id and fusion_id of all
registers with rules_id = x;

http://localhost:8080/restapi/fusi
on-rules-api/delete/id=all

fusion-rule DELETE Delete all registers;

http://localhost:8080/restapi/fusi
on-rules-api/delete/id=n

fusion-rule DELETE Delete register with fusion_rule_id = n;

http://localhost:8080/restapi/fusi
on-rules-api/delete/fusion=x

fusion-rule DELETE Delete all registers with fusion_id = x;

http://localhost:8080/restapi/fusi
on-rules-api/delete/rules=x

fusion-rule DELETE Delete all registers with rules_id = x;

http://localhost:8080/restapi/fusi
on-rules-

api/post/fusion=x/rules=y

fusion-rule POST Insert a new register with fusion_id = x and
rules_id = y;

http://localhost:8080/restapi/fusi
on-rules-

api/put/id=n/fusion=y/rules=z

fusion-rule PUT Update register fusion_rule_id = n with de
fusion_id = x and rules_id = z;

URLID Table Method Description

http://localhost:8080/restapi/rule
s-actions-api/get/id=all

action GET Returns action_id, rules_id, resource_id and
resource_action_type_id of all registers;

http://localhost:8080/restapi/rule
s-actions-api/get/id=n

action GET Returns rules_id, resource_id and
resource_action_type_id of register with

action_id = n;

http://localhost:8080/restapi/rule
s-actions-api/get/rules=x

action GET Returns action_id, resource_id and
resource_action_type_id of register with

rules_id = x;

http://localhost:8080/restapi/rule
s-actions-api/get/resource=x

action GET Returns action_id, rules_id and
resource_action_type_id of all registers with

resource_id = x;

http://localhost:8080/restapi/rule
s-actions-api/get/type=x

action GET Returns action_id, rules_id and resource_id of
all registers with resource_action_type_id = x;

http://localhost:8080/restapi/rule
s-actions-api/delete/id=all

action DELETE Delete all registers;

http://localhost:8080/restapi/rule
s-actions-api/delete/id=n

action DELETE Delete register with action_id = n;

http://localhost:8080/restapi/rule
s-actions-api/delete/description=x

action DELETE Delete all registers with rules_id = x;

http://localhost:8080/restapi/rule
s-actions-api/delete/type=x

action DELETE Delete all registers with resource_id = x;

http://localhost:8080/restapi/rule
s-actions-api/delete/idfk=n

action DELETE Delete all registers with
resource_action_type_id = n;

http://localhost:8080/restapi/rule
s-actions-

action POST Insert a new register with rules_id = x,
resource_id = y and resource_action_type_id =

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 38 of 44 Submission date: 25/03/2015

api/post/rules=x/resource=y/type
=z

z;

http://localhost:8080/restapi/reso
urce-

api/put/id=n/rules=x/resource=y/t
ype=z

action PUT Update register action_id = n with rules_id = x,
resource_id and resource_action_type_id = z;

URLID Table Method Description

http://localhost:8080/restapi/log-
resource-api/get/id=all

log-resource GET Returns resource_log_id, resource_id and value
of all registers;

http://localhost:8080/restapi/log-
resource-api/get/id=n

log-resource GET Returns resource_id and resource_log_value of
register with resource_log_id = n;

http://localhost:8080/restapi/log-
resource-api/get/resource=x

log-resource GET Returns resource_log_id and
resource_log_value of the most recently

register with resource_id = x;

http://localhost:8080/restapi/log-
resource-api/get/value=x

log-resource GET Returns resource_log_id and resource_id of all
registers with resource_log_value = x;

http://localhost:8080/restapi/log-
resource-api/delete/id=all

log-resource DELETE Delete all registers;

http://localhost:8080/restapi/log-
resource-api/delete/id=n

log-resource DELETE Delete register with resource_log_id = n;

http://localhost:8080/restapi/log-
resource-api/delete/resource=x

log-resource DELETE Delete all registers with resource_id = x;

http://localhost:8080/restapi/log-
resource-api/delete/value=x

log-resource DELETE Delete all registers with resource_log_value = x;

http://localhost:8080/restapi/log-
resource-

api/post/resource=x/value=y

log-resource POST Insert a new register with resource_id = x and
resource_log_value = y;

http://localhost:8080/restapi/log-
resource-

api/put/id=n/resource=y/value=z

log-resource PUT Update register resource_log_id = n with de
resource_id = x and resource_log_value = z;

URLID Table Method Description

http://localhost:8080/restapi/log-
fusion-api/get/id=all

fusion-log GET Returns fusion_log_id, fusion_id and value of
all registers;

http://localhost:8080/restapi/log-
fusion-api/get/id=n

fusion-log GET Returns fusion_id and fusion_log_value of
register with fusion_log_id = n;

http://localhost:8080/restapi/log-
fusion-api/get/fusion=x

fusion-log GET Returns fusion_log_id and fusion_log_value of
all registers with fusion_id = x;

http://localhost:8080/restapi/log-
fusion-api/get/value=x

fusion-log GET Returns fusion_log_id and fusion_id of all
registers with fusion_log_value = x;

http://localhost:8080/restapi/log-
fusion-api/delete/id=all

fusion-log DELETE Delete all registers;

http://localhost:8080/restapi/log-
fusion-api/delete/id=n

fusion-log DELETE Delete register with fusion_log_id = n;

http://localhost:8080/restapi/log-
fusion-api/delete/fusion=x

fusion-log DELETE Delete all registers with fusion_id = x;

http://localhost:8080/restapi/log-
fusion-api/delete/value=x

fusion-log DELETE Delete all registers with fusion_log_value = x;

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 39 of 44 Submission date: 25/03/2015

http://localhost:8080/restapi/log-
fusion-api/post/fusion=x/value=y

fusion-log POST Insert a new register with fusion_id = x and
fusion_log_value = y;

http://localhost:8080/restapi/log-
fusion-

api/put/id=n/fusion=y/value=z

fusion-log PUT Update register fusion_log_id = n with de
fusion_id = x and fusion_log_value = z;

URLID Table Method Description

http://localhost:8080/restapi/log-
rules-api/get/id=all

rule-log GET Returns rule_log_id, rules_id and creation_date
of all registers;

http://localhost:8080/restapi/log-
rules-api/get/id=n

rule-log GET Returns rules_id and creation_date of register
with rule_log_id = n;

http://localhost:8080/restapi/log-
rules-api/get/rules=x

rule-log GET Returns rule_log_id and creation_date of all
registers with rules_id = x;

http://localhost:8080/restapi/log-
rules-api/get/date=x

rule-log GET Returns rule_log_id and rules_id of all registers
with creation_date = x;

http://localhost:8080/restapi/log-
rules-api/delete/id=all

rule-log DELETE Delete all registers;

http://localhost:8080/restapi/log-
rules-api/delete/id=n

rule-log DELETE Delete register with rule_log_id = n;

http://localhost:8080/restapi/log-
rules-api/delete/rules=x

rule-log DELETE Delete all registers with rules_id = x;

http://localhost:8080/restapi/log-
rules-api/delete/date=x

rule-log DELETE Delete all registers with creation_date = x;

http://localhost:8080/restapi/log-
rules-api/post/rules=x/date=y

rule-log POST Insert a new register with rules_id = x and
creation_date = y;

http://localhost:8080/restapi/log-
rules-api/put/id=n/rules=y/date=z

rule-log PUT Update register rule_log_id = n with de rules_id
= x and creation_date = z;

URLID Table Method Description

http://localhost:8080/restapi/log-
rsc-fusion-api/get/id=all

resource-fusion-
log

GET Returns resource_fusion_log_id, fusion_log_id
and resource_log_id of all registers;

http://localhost:8080/restapi/log-
rsc-fusion-api/get/id=n

resource-fusion-
log

GET Returns fusion_log_id and resource_log_id of
register with resource_fusion_log_id = n;

http://localhost:8080/restapi/log-
rsc-fusion-api/get/fusion=x

resource-fusion-
log

GET Returns resource_fusion_log_id and
resource_log_id of all registers with

fusion_log_id = x;

http://localhost:8080/restapi/log-
rsc-fusion-api/get/resource=x

resource-fusion-
log

GET Returns resource_fusion_log_id and
fusion_log_id of all registers with

resource_log_id = x;

http://localhost:8080/restapi/log-
rsc-fusion-api/delete/id=all

resource-fusion-
log

DELETE Delete all registers;

http://localhost:8080/restapi/log-
rsc-fusion-api/delete/id=n

resource-fusion-
log

DELETE Delete register with resource_fusion_log_id =
n;

http://localhost:8080/restapi/log-
rsc-fusion-api/delete/fusion=x

resource-fusion-
log

DELETE Delete all registers with fusion_log_id = x;

http://localhost:8080/restapi/log-
rsc-fusion-api/delete/resource=x

resource-fusion-
log

DELETE Delete all registers with resource_log_id = x;

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 40 of 44 Submission date: 25/03/2015

http://localhost:8080/restapi/log-
rsc-fusion-

api/post/fusion=x/resource=y

resource-fusion-
log

POST Insert a new register with fusion_log_id = x and
resource_log_id = y;

http://localhost:8080/restapi/log-
rsc-fusion-

api/put/id=n/fusion=y/resource=z

resource-fusion-
log

PUT Update register resource_fusion_log_id = n
with fusion_log_id = x and resource_log_id = z;

URLID Table Method Description

http://localhost:8080/restapi/log-
fusion-rules-api/get/id=all

fusion-rule-log GET Returns fusion_rule_log_id, fusion_rule_id and
creation_date of all registers;

http://localhost:8080/restapi/log-
fusion-rules-api/get/id=n

fusion-rule-log GET Returns fusion_rule_id and creation_date of
register with fusion_rule_log_id = n;

http://localhost:8080/restapi/log-
fusion-rules-api/get/rules=x

fusion-rule-log GET Returns fusion_rule_log_id and creation_date
of all registers with fusion_rule_id = x;

http://localhost:8080/restapi/log-
fusion-rules-api/get/date=x

fusion-rule-log GET Returns fusion_rule_log_id and fusion_rule_id
of all registers with creation_date = x;

http://localhost:8080/restapi/log-
fusion-rules-api/delete/id=all

fusion-rule-log DELETE Delete all registers;

http://localhost:8080/restapi/log-
fusion-rules-api/delete/id=n

fusion-rule-log DELETE Delete register with fusion_rule_log_id = n;

http://localhost:8080/restapi/log-
fusion-rules-api/delete/rules=x

fusion-rule-log DELETE Delete all registers with fusion_rule_id = x;

http://localhost:8080/restapi/log-
fusion-rules-api/delete/date=x

fusion-rule-log DELETE Delete all registers with creation_date = x;

http://localhost:8080/restapi/log-
fusion-rules-

api/post/rules=x/date=y

fusion-rule-log POST Insert a new register with fusion_rule_id = x
and creation_date = y;

http://localhost:8080/restapi/log-
fusion-rules-

api/put/id=n/rules=y/date=z

fusion-rule-log PUT Update register fusion_rule_log_id = n with de
fusion_rule_id = x and creation_date = z;

URLID Table Method Description

http://localhost:8080/restapi/log-
rules-actions-api/get/id=all

rule-action-log GET Returns rule_action_log_id, rules_id,
resource_action_type_id, resource_id and

creation_date of all registers;

http://localhost:8080/restapi/log-
rules-actions-api/get/id=n

rule-action-log GET Returns rules_id, resource_action_type_id,
resource_id and creation_date of register with

rule_action_log_id = n;

http://localhost:8080/restapi/log-
rules-actions-api/get/rules=x

rule-action-log GET Returns rule_action_log_id,
resource_action_type_id, resource_id and

creation_date of all registers with rules_id = x;

http://localhost:8080/restapi/log-
rules-actions-api/get/actions=x

rule-action-log GET Returns rule_action_log_id, rules_id,
resource_id and creation_date of all registers

with resource_action_type_id = x;

http://localhost:8080/restapi/log-
rules-actions-api/get/resource=x

rule-action-log GET Returns rule_action_log_id, rules_id,
resource_action_type_id and creation_date of

all registers with resource_id = x;

http://localhost:8080/restapi/log-
rules-actions-api/get/date=x

rule-action-log GET Returns rule_action_log_id, rules_id,
resource_action_type_id and resource_id of all

registers with creation_date = x;

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 41 of 44 Submission date: 25/03/2015

http://localhost:8080/restapi/log-
rules-actions-api/delete/id=all

rule-action-log DELETE Delete all registers;

http://localhost:8080/restapi/log-
rules-actions-api/delete/id=n

rule-action-log DELETE Delete register with rule_action_log_id = n;

http://localhost:8080/restapi/log-
rules-actions-api/delete/rules=x

rule-action-log DELETE Delete all registers with rules_id = x;

http://localhost:8080/restapi/log-
rules-actions-api/delete/actions=x

rule-action-log DELETE Delete all registers with
resource_action_type_id = x;

http://localhost:8080/restapi/log-
rules-actions-

api/delete/resource=x

rule-action-log DELETE Delete all registers with resource_id = x;

http://localhost:8080/restapi/log-
rules-actions-api/delete/date=x

rule-action-log DELETE Delete all registers with creation_date = x;

http://localhost:8080/restapi/log-
rules-actions-

api/post/rules=x/actions=y/resour
ce=z/date=w

rule-action-log POST Insert a new register with rules_id = x,
resource_action_type_id = y, resource_id = z

and creation_date = w;

http://localhost:8080/restapi/log-
rules-actions-

api/put/id=n/rules=x/actions=y/re
source=z/date=w

rule-action-log PUT Update register rule_action_log_id = n with de
rules_id = x, resource_action_type_id = y,

resource_id = z and creation_date = w;

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 42 of 44 Submission date: 25/03/2015

Appendix C –Log Tables

a)

b)

c)

d)

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 43 of 44 Submission date: 25/03/2015

e)

f)

IMPReSS D6.4 Implementation of Context Reasoning Engine

Document version: 1.0 Page 44 of 44 Submission date: 25/03/2015

