
Document version: 1.0 Submission date: 31/08/2015

(FP7 614100)

D6.5 Implementation of Context Modelling Tool and Templates

Published by the IMPReSS Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme
Objective ICT-2013.10.2 EU-Brazil research and development Cooperation

Target Outcome: b) Sustainable technologies for a Smarter Society

http://www.cnpq.br/index.htm

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 2 of 27 Submission date: 31/08/2015

Document control page

Document file: D6.5 Implementation of Context Modelling Tool and Templates.docx

Document version: 1.0

Document owner: Carlos Kamienski (UFABC)

Work package: WP6 – Software System Engineering and Context Management

Task: Task 6.4 Context Model & Rule Authoring tool

Deliverable type: P

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Gabriela Oliveira Biondi 07/08/2015 Initial version

0.2 Carlos Alberto Kamienski 19/08/2015 Context Modelling Tool

0.9 Carlos Alberto Kamienski 23/08/2015 First version ready for internal review

1.0 Carlos Alberto Kamienski 26/08/2015 Final version

Internal review history:

Reviewed by Date Summary of comments

José Ángel Carvajal Soto 24/08/2015 Small comments and recommendations

Stênio F. L. Fernandes 26/08/2015 Small comments and fixes

Legal Notice

The information in this document is subject to change without notice.

The Members of the Impress Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular

purpose. The Members of the Impress Consortium shall not be held liable for errors contained herein or

direct, indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of

the information contained therein.

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 3 of 27 Submission date: 31/08/2015

Index:

1. Executive summary ... 4

1. Introduction .. 5

1.1 Purpose and context of this deliverable ... 5
1.2 Scope of this deliverable .. 5
1.3 Document Structure .. 5

2. Context Management Middleware ... 6

2.1 Context Entities and Templates .. 6
2.2 Framework Architecture .. 7
2.3 Context Storage ... 8
2.4 Context API ... 9

3. Context Modelling Tool .. 10

3.1 Place Entity .. 10
3.2 Resource Entity .. 11
3.3 Fusion Entity .. 13
3.4 Rule Entity ... 14
3.5 Action Entity .. 15
3.6 Context Entity .. 16

3.6.1 Context-Type ... 17
3.6.2 Context Definition Interface ... 17
3.6.3 Context Graphs .. 19
3.6.4 Context Log ... 20
3.6.5 Tracking and Counting Context Execution .. 21
3.6.6 Tracking Contexts with Nested Fusions .. 23

3.7 Activity Entity (Schedule) .. 24

4. Conclusion ... 26

References ... 27

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 4 of 27 Submission date: 31/08/2015

1. Executive summary

IMPReSS aims at providing a Systems Development Platform (SDP) for enabling rapid development

of mixed critical complex systems involving Internet of Things and Services (IoTS). The
demonstration and evaluation of the IMPReSS platform focuses on energy efficiency systems

addressing the reduction of energy usage and CO2 footprint in public buildings. Application
developers can develop applications using the SDP for a variety of purposes, including energy

efficiency management. In order to provide an efficient use of energy in buildings, the IMPReSS SDP
will need to be context aware, which means that it must know what happens inside the buildings so

that opportunities to save energy can be identified and effectively fulfilled. Context-aware systems

are able to adapt their operations according to the current conditions without any explicit user
intervention.

Work package 6 provides context entities and templates for energy efficiency applications as well as
the Context Manager, a middleware component. The Context Manager encompasses all background

software components that a typical context-aware middleware offers to its users, such as context

templates, context models, context reasoning engine, and algorithms for sensor and data fusion.
The implementation of the Context Manager was presented in Deliverable D6.4, according to the

specification presented previously in Deliverable D6.3.

This document presents the main interface (i.e., the IMPReSS Context Web UI) for accessing the

features provided by the Context Manager via a REST API, a Context Modelling Tool. The Web UI
allows users to perform CRUD (Create, Read, Update, Delete) operations upon seven entities that

may be used to develop a typical context-aware building automation application: Resource

(sensors/actuators), Place (rooms, floors), Fusion (data aggregation), Rule (decisions), Action
(commands to actuators), Activity (scheduled activities), and Context (combination of Resource,

Place, Fusion, Rule and Action). The Context Web UI is one example of many different interfaces
that may be developed for interacting with the Context Manager via the Context API, such as a

smartphone/table application (mobile app) or even a CLI (Command-Line Interface). Particularly, the

Context Web UI is based on AngularJS, an open-source web application framework developed by
Google for simple-page Web applications.

The Context Web UI has been developed with two primary goals. Firstly, to explore and
demonstrate the features provided by the Context Manager. Secondly, for making it easier for

developers or integrators to configure energy efficiency context management applications.

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 5 of 27 Submission date: 31/08/2015

1. Introduction

1.1 Purpose and context of this deliverable

The aim of the IMPReSS project is to provide a Systems Development Platform (SDP) that enables

rapid and cost effective development of mixed criticality complex systems involving Internet of

Things and Services (IoTS) and at the same time facilitates the interplay with users and external
systems. The IMPReSS development platform will be usable for any system intended to embrace a

smarter society. The demonstration and evaluation of the IMPReSS platform will focus on energy
efficiency systems addressing the reduction of energy usage and CO2 footprint in public buildings,

enhancing the intelligence of monitoring and control systems as well as stimulating user energy

awareness.

The present document is an output of Task 6.4 (Context Model & Rule Authoring Tool), which aims

at developing a tool for allowing the configuration of entities belonging to the context model of an
energy-efficiency management application, including sensors, fusion and rules. Deliverable D6.4

presented the implementation of the IMPReSS Context Manager, the component in charge of

adapting system behavior according the changes in the context. The Context Manager offers an
REST API that may be used by different client applications implementing user interfaces, such as a

typical Graphical User Interface (GUI), a Web User Interface (Web UI), an App User Interface or
even a Command Line Interface (CLI). This document presents the IMPReSS Context Web UI that

may be used by IMPReSS application developers as well as by IMPReSS solution integrators.

1.2 Scope of this deliverable

In order to allow applications to make efficient use of energy in buildings, the IMPReSS Platform

must provide context-aware management features, so that automatic decisions can be made based
on existing context information coming from a variety of sources, including physical sensors,

timetables, and business rules. The implementation of the IMPReSS Context Web UI is a key

achievement for the IMPReSS project, since it allows users to interact with the Context Manager.

This deliverable aims at providing a clear understanding the Context Web UI focusing on its main

features. It is not a user guide or manual, but may be used to help users in understanding how the
Context Web UI and the Context Manager work.

1.3 Document Structure

The reminder of this document is organized into three chapters.

 Chapter 2 summarizes the key features of the Context Manager, already introduced in

Deliverable D6.4, but now with some updates reflecting the new developments.

 Chapter 3 introduces the Context Management Tool, also known as the Context Web UI,

presenting the interfaces for dealing with the seven IMPReSS Context Entities, namely

Place, Resource, Fusion, Rule, Action, Context and Activity.

 Chapter 4 presents some final remarks and the next steps.

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 6 of 27 Submission date: 31/08/2015

2. Context Management Middleware

2.1 Context Entities and Templates

The use of entities and templates for energy efficiency context management aims at making it easier

to understand, model, and program the context-awareness features of the IMPReSS project. This

section provides an update of deliverable D6.4 (Kamienski et al. 2015), based on the most recent
developments of context model and reasoner.

Through an extensive requirements analysis, we identified seven entities that commonly exist in
typical context-aware building automation applications: Resource (sensors/actuators), Place (rooms,

floors), Fusion (data aggregation), Rule (decisions), Action (commands to actuators), Activity

(scheduled activities), and Context (combination of Resource, Place, Fusion, Rule and Action).
Entities have templates with their attributes that are involved in the process of managing energy

efficiency context. Figure 1 depicts the relationships among the eight entities, which are:

 Place has Resource: A Resource is always located in a Place;

 Resource influences Rule: Rules are influenced by Resource usage;

 Fusion uses Resource: Fusion criteria combines data coming from sensors, which are

classified as Resources;

 Fusion fires Rule: Rules are fires by sensor data that are combined by a Fusion criteria;

 Rule relates to Place: Rules affect and are affected by Places;

 Rule performs Action: when a Rule is fired, its processing results in one or more Actions to

be performed;

 Activity fires Rule: the schedule of Activities may fire Rules regardless of data coming from

sensors;

 Context contains Entities: the Context entity represents a given context that is considered

important to be modeled by any application and it contains Place, Resource, Fusion, Rule,

and Action.

Figure 1 – IMPReSS Context Entities and Relationships

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 7 of 27 Submission date: 31/08/2015

2.2 Framework Architecture

According to the IMPReSS Software Architecture, introduced in IMPReSS Deliverable D2.2.1
(Kamienski 2014a), the Context Manager is a module of the IMPReSS Middleware in charge of

providing background software components that a typical context-aware middleware offers to its

users, such as context templates, context models, context reasoning engine, and algorithms for
sensor and data fusion. This section introduces the Context Management Framework Architecture,

also known as Context Manager, introduced in IMPReSS Deliverable D6.3 (Kamienski 2014b). The
Context Manager is based on object-oriented context modeling and rule-based context reasoning.

Figure 2 depicts the Context Manager Architecture, which contains the following modules:

 Context API: part of the IMPReSS Middleware API. It provides a REST interface, allowing

other modules to interact with the Context Manager. CRUD operations are executed upon

context entities through the Context API by a variety of different applications, such as the

Context Web UI presented in this document.

 Context Storage: deals with storage and retrieval of context entity templates, via the

Context API. Any Relational Database Management System (RDBMS) with an Object-

Relational Mapping (ORM) system may be used. We used EclipseLink as ORM, along with
PostgreSQL RDBMS.

 Reasoner: infers logical consequences from a set of facts. The Reasoner is invoked by the

Fuser and reads entities from the Context Storage. When it is invoked with a set or

parameters it searches the entire set of rules for a match, i.e., a rule that matches the
parameters. In case of rule conflicts, the Reasoner must select only one rule to be executed

based on some resolution mechanism. As a result of firing a rule, one or more actions are
performed and they usually refer to changing the configuration of devices or equipments for

dynamically adapting behavior, e.g. turning off an elevator or lowering the temperature of
an air conditioner. The Reasoner performs this task by sending command messages to

actuators through the Communication Proxy. Our implementation is based on Drools1

(Expert and Workbench).

 Fuser: responsible for data fusion, which means the use of a set of techniques for combining

data from multiple sources or computing statistics. The Fuser is directly connected to the

Communication Proxy for receiving real-time sensor data and when fusion criteria are met it
activates the Reasoner and stores the fused results. Also, fused data may become a virtual

sensor and be redirected back to the Fuser. Multiple fusion criteria may be active

concurrently and therefore this module plays a key role for the performance of the Context
Manager. In our implementation, fusion is performed by Esper2, which can perform Complex

Event Processing CEP) by filtering, analyzing, and fusing events in various ways,
configurable through an SQL-like language.

 Scheduler: Manages the agenda for prescheduled events (such as classes in a university)

and fires the Reasoner for taking appropriate actions.

 Communication Proxy: encapsulates communication with resources, interfacing with the

Communication Manager and with a MQTT3 broker.

 Local Data Storage: implements internal data storage, for sensor data, fused data, and

event logging.

1 www.drools.org
2 www.espertech.com
3 mqtt.org

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 8 of 27 Submission date: 31/08/2015

Figure 2 – IMPReSS Context Manager Architecture

2.3 Context Storage

The Context Manager is based on an object-oriented modelling, since it easily integrates with

current programming languages, such as Java. However, when it comes to storing the objects in
secondary storage, the most common way currently in use is by converting them into a relational

database. This solution requires: a) a relational database (PostgreSQL, in the current version); b) a

mapping between objects represented in the programming language and tables in the database; c)
an efficient modeling of the database for representing the context entities templates.

We developed a relational modelling for storing entity templates, which operates in two categories:
Operation and Log, which are represented in blue and orange in Figure 3 respectively.

Tables belonging to the “how to” category are aimed at storing the entity templates, such as places,

sensors, actuators and other preferences. On the other hand, tables belonging to the “operation log”
category store log information of all actions executed by the Context Manager, such as actions

executed by actuators, fusion outcomes, etc.

Figure 3 depicts the diagram that represents a relational model developed for the Context Manager.

In a relational model, each entity (table) is represented as a rectangle. Relationships between
entities are represented as continuous lines with symbols in their ends representing the type of

relationship, which in our case may be one-to-one/many or one-to-zero/one/many. Please notice

that entity PLACE, which stores all “places” of importance to the system, has self-relationship,
because a place may be located inside another place. For example, a “classroom” place is within a

“corridor” place, which in turn is within a “floor” place, which finally is within a “building” place. A
self-relationship is implemented by using a foreign key filled in with a value coming from a primary

key from the same table. Some tables may be play a temporary and internal role and may be

substituted when all modules of the IMPReSS architecture are integrated into the platform, because
some data types (entities) will be stored inside other modules of the IMPReSS platform. This

														Fuser 						Reasoner

Local	Data	
Storage	

Context API

Scheduler

Context Storage

Communica on	Proxy	

Place Resource

Fusion Rule

Action Activity

Context

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 9 of 27 Submission date: 31/08/2015

relational model has been implemented in PostgreSQL and the creation script can be found in Annex

A.

Figure 3 – Relational database of the IMPReSS Context Manager

2.4 Context API

In order to provide a uniform and standard interface for external access as well as to provide data

integrity to the Context Manager, all CRUD operations are performed through a REST API. Basically,

a REST API uses four methods: GET, DELETE, POST, and PUT. Appendix B contains a detailed list of
all methods belonging to the Context Manager API.

Table 1 – Mapping between CRUD operation and REST Method

Operation Method

Create POST

Read GET

Update PUT

Delete DELETE

The Swagger framework is used to generate automatic documentation of the REST API developed
for the Context Manager of the IMPReSS platform. This framework is based on a Graphical User

Interface and provides searching operations and REST URLs.

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 10 of 27 Submission date: 31/08/2015

3. Context Modelling Tool

This section introduces the Context Modelling Tool, also known as Context Web User Interface (Web
UI), used for performing CRUD (Create, Read, Update, Delete) operations on the seven context

entities presented in section 2.1, namely Place, Resource, Fusion, Rule, Action, Context, and Activity.
In fact, the Context Web UI is one example of many different interfaces that may be developed for

interacting with the Context Manager via the Context API (section 2.4), such as a smartphone/table

application (mobile app) or even a CLI (Command-Line Interface). Particularly, the Context Web UI
is based on AngularJS, an open-source web application framework developed by Google for simple-

page Web applications4.

The Context Web UI has been developed with two primary goals:

1. Exploring and showing the features provided by the Context Manager;

2. Making it easier for developers or integrators to configure energy efficiency context

management applications.

Therefore, functionality is the main purpose of the Web UI so that items purely related to design
were not included in this version, being considered out of the scope. Figure 4 depicts the main

screen for the Context Web UI, with the lateral menu where users can access configuration options
for all entities.

Figure 4 – Context Web UI - Home

3.1 Place Entity

The Place Context Entity is a container for a series of events that happen in physical places, open or

close, such as rooms. Particularly, the specification of places can be nested inside other places, thus
making it possible a recursive modeling style. In a university, examples of places are classroom,

office, amphitheater, hall, building and floor.

Places have multiple attributes and one of them is type, which given its importance to the
implementation of the Context Manager is modeled as an auxiliary entity called Place-Type. Figure 5

depicts the screen for configuring Place-Type entities.

4 https://angularjs.org

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 11 of 27 Submission date: 31/08/2015

Figure 5 – Context Web UI – Place Type

Figure 6 depicts the screen for creating, reading, updating, and deleting Place entries. Some

attributes of Place are ID, description, type, location, and dependence. The latter is used to for
stating whether the existence of this place is dependent or independent of a Context Entity.

Dependent places will be automatically deleted whenever the linked context is deleted and

independent ones will be preserved.

Figure 6 – Context Web UI – Place

3.2 Resource Entity

Resources are used mainly to represent sensors and actuators, but also to represent any equipment

that is worth to be identified in an energy efficiency management application, such as air
conditioners, elevators, and water pumps. As for Places, Resources have multiple attributes and one

of them is type, which given its importance to the implementation of the Context Manager is
modeled as an auxiliary entity called Resource-Type, which can be lighting or temperature sensor,

for instance. Figure 7 depicts the screen for configuring Resource-Type entities.

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 12 of 27 Submission date: 31/08/2015

Figure 7 – Context Web UI – Resource Type

Also, Figure 8 depicts the screen for creating, reading, updating, and deleting Resource entries.
Some attributes of Place are ID, description, type, location, and dependence. The latter is used to

for stating whether the existence of this resource is dependent or independent of a Context Entity.

Dependent resources will be automatically deleted whenever the linked context is deleted and
independent ones will be preserved. Some examples of resources could be a temperature sensor

T1310 or an air-conditioner actuator AC1320.

Figure 8 – Context Web UI – Resource

The Context Web UI also allows the visualization of resource logs, such as data coming from sensors

or commands sent to actuators, as shown by Figure 9.

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 13 of 27 Submission date: 31/08/2015

Figure 9 – Context Web UI – Resource Log

3.3 Fusion Entity

Data Fusion in the IMPReSS Context Manager is represented by Esper Streams (called fusion

criteria) and they are used to prepare and combine data in a way that is more adequate for context
reasoning. Figure 10 depicts the interface for configuring fusion criteria. Some examples might be to

compute the 10-minute temperature average of a classroom or the light intensity of the front part of
the classroom.

Figure 10 – Context Web UI – Fusion

Whenever a fusion criterion is executed, the execution context and results are logged in the local

database, which are available for query and visualization, as shown by Figure 11.

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 14 of 27 Submission date: 31/08/2015

Figure 11 – Context Web UI – Fusion Log

3.4 Rule Entity

Rules perform context reasoning in the IMPReSS Context Manager, which allows system behavior to

change automatically, without any human intervention. The key player for on-the-fly changing
behaviour is the rule engine (Drools) that receives data coming from the fusion engine (Esper),

analyzes a set of rules and decides whether actions should be taken. Figure 12 depicts the interface
for rules configuration. Some examples are to turn on or off the air conditioner when temperature is

above or below a given threshold or to switch lights on or off in certain parts of a classroom

depending on its occupancy.

Figure 12 – Context Web UI – Rule

Whenever a rule is executed, the execution context and results are logged in the local database,
which are available for query and visualization, as shown in Figure 13.

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 15 of 27 Submission date: 31/08/2015

Figure 13 – Context Web UI – Rule Log

3.5 Action Entity

Actions implement the concept of changing behavior automatically as an outcome of executing a

rule and they do this by sending commands to actuators. As for other entities, Actions have multiple
attributes and one of them is type, which given its importance to the implementation of the Context

Manager is modeled as an auxiliary entity called Resource-Action-Type. This entity relates actions
with resources, for example, switch on lights or turn off air conditioner. Figure 14 depicts the

interface for configuring Resource-Action-Type entities.

Figure 14 – Context Web UI – Resource-Action Type

In addition, Figure 15 depicts the screen for creating, reading, updating, and deleting Action entries.

Some attributes of Action are ID, rule, resource, and resource-action-type. An example of action is
Turn ON AC1320 (a resource of the type air conditioner actuator).

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 16 of 27 Submission date: 31/08/2015

Figure 15 – Context Web UI – Action

Whenever a certain action is executed, the execution context is logged in the local database, which

is available for query and visualization, as shown in Figure 16.

Figure 16 – Context Web UI – Action Log

3.6 Context Entity

Context is a container entity, i.e., it contains a set of instances of other five entities: Place,
Resource, Fusion, Rule, and Action. Some examples may be classroom is empty, elevator is idle or

university is closed. In fact, the specification of context is important for modelling or documentation
purposes, which means that developers, integrators, or end-users might be interested in specifying

changes of system behavior according to a broader concept of context, instead of thinking about

individual sensors, fusion, or rules. However, contexts are non-binding when it comes to the
execution of particular fusion criteria, rules, and actions. In other words, even though a particular

context specifies that a set of sensors have their data combined by a fusion, which in turn fires a
rule that perform some actions, in practice that might happen in different ways.

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 17 of 27 Submission date: 31/08/2015

3.6.1 Context-Type

Contexts have a type, which follow an auxiliary entity called Context-Type, as depicted by Figure 17.

Figure 17 – Context Web UI – Context Type

3.6.2 Context Definition Interface

The interface for configuring Context entries is depicted by Figure 18. For example, a university may

determine that whenever a classroom is empty, its lights must be switched off and the air
conditioners (or heaters) must be turned off. Determining that a classroom is empty may involve

different presence sensors placed in strategic positions within the classroom. The values measures
by these sensors ideally would not be considered individually, but an average of their measurements

in the last, say, 30 seconds may be considered. Also, when all presence sensors indicate that no one

is within the classroom, a rule will be fired that in turn executes two actions for switching off lights
and turning off air conditioners.

Also, users may be interested in testing different ways of implementing a particular contexts and
comparing their results. Therefore, the context interface allows contexts to have versions where only

one version will be active in a particular point in time. Such approach allows history of previous
context definitions to be maintained while new ones are tested.

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 18 of 27 Submission date: 31/08/2015

a)

b)

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 19 of 27 Submission date: 31/08/2015

c)

Figure 18 – Context Web UI – Context

3.6.3 Context Graphs

As an additional feature, contexts can be visualized in a graph-based interface. This feature is aimed
at making it easier to users to model Context entities as a combination of Place, Resource, Fusion,

Rule, and Action entities. In a context graph, the set of vertices is represented by entity instances
and the set of edges is represented by data flow or control flow among entities. Figure 19 presents

three examples of context graphs in a preliminary design, since this feature is currently under
development.

a)

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 20 of 27 Submission date: 31/08/2015

b)

c)

Figure 19 – Context Web UI – Context Graph

3.6.4 Context Log

Whenever a context is executed, a log entry is generated in the local database, which is available for
query and visualization, as shown by Figure 20.

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 21 of 27 Submission date: 31/08/2015

Figure 20 – Context Web UI – Context Log

3.6.5 Tracking and Counting Context Execution

Context logging does not only play an important auditing role, but also it helps users to understand
which contexts are being executed, given a set of places, resources, fusion, rules, and actions. Also,

context logging is not simply to track the execution of a single entity, since they contain multiple

entities of different classes. Therefore, the Context Web UI has an additional feature of context
tracking and counting, for helping users to understand and control which contexts are begin

executed in practice. That happens, because as mentioned above, it is not possible to enforce the
execution of a give context graph as defined by developers or integrators. Rather, contexts may be

executed in unpredictable ways. Please notice that some contexts happen in the exact way they

were defined, whereas other contexts may happen in unexpected ways, i.e. without administrators
being aware of them.

A new syntax was defined in order to track and count the sequence of entities involved in the
execution of a particular context. It uses a letter for identifying each entity (S = sensor; F = fusion;

R = Rule; A = action/actuator) followed by a virtual ID (a number). In the sequence there are a “*”
(star) for relating the virtual ID with the real ID in the context storage. Virtual IDs are necessary

because the same fusion may be used more than once in the same context, as shown by Figure 24,

so that the real ID of a fusion would not be enough for uniquely identifying each element of a
graph. The real ID relates each element with its function, whereas the virtual ID relates each

element with its position in a graph. Entities of different classes are connected via a “:” (colon),
whereas different connections are separated by a “;” (semicolon). Entities of the same class, such as

two actions, are separated by a “,” (comma). Figure 21 illustrates different graphs and their

representation in this new syntax.

a) S1*3:F1*1;F1*1:R1*1;R1*1:A1*1,R1*1:A2*2;

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 22 of 27 Submission date: 31/08/2015

b) S1*6:F1*1;F1*1:R1*2;R1*2:A1*4,R1*2:A2*5;

c) S1*7:F1*1,S2*8:F1*1,S3*9:F2*1;F1*1:F2*1,F2*1:R1*2;R1*2:A1*10,R1*2:A2*11;

d) S1*15:F1*1,S2*16:F1*1,S3*17:F2*1,S4*18:F2*1;F1*1:F3*1,F2*1:
F3*1,F3*1:R1*2;R1*2:A1*13,R1*2:A2*14;

Figure 21 – Tracking and Counting Context Executions

Each Context entry registered in the application is included in the Context Count Table starting with

0 executions, as shown by Figure 22 as a preliminary interface, since this feature is not finished yet.

For the IMPReSS Context Manager, Context tracking is performed backwards, which means that it
starts with the analyses of actions send to actuators, going back to a rule that performed that

action, and back to a fusion that fired that rule and to the sensors that generated the initial data.
This tracking yields the executed context graphs, i.e., the sequences of actions and transitions that

occurred in practice. As mentioned before, some sequences (graphs) may be registered in the
system and other may not. In that case, users may choose to add the graph generated as a result of

the tracking process. Whenever a context execution is identified, it is lookup up in the table. If it is

already there, its count is incremented. Otherwise, they are added to the Context Count Table with
the count set to 1.

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 23 of 27 Submission date: 31/08/2015

Figure 22 – Context Web UI – Context Count Table

As presented in section 2.3, Context Storage is implemented as a relational database. Therefore,

context tracking is performed by database queries (Figure 23), actually using sub-queries. Each sub-

query tracks backwards, i.e., from the action in an actuator back to the sensor(s) that started it. For
example, suppose that an air conditioner was turned off because a rule fired an action, a fusion fired

a rule and data coming from sensors fired a fusion. That is exactly the backtrack function that the
sub-queries from Figure 23 performs.

select id_dependence_fusion_log_fk

from resource

where id_resource in

 (select id_resource_fk

 from resource_log

 where id_resource_log in

 (select id_resource_log_fk

 from rsc_fusion_log

 where id_fusion_log_fk in

 (select id_fusion_log_fk

 from fusion_rule_log

 where id_rule_action_log_fk in

 (select id_rule_action_log

 from rule_action_log

 where creation_date = '99/99/99 99:99:99'))));

Figure 23 – Context Web UI – Context Tracking Query

3.6.6 Tracking Contexts with Nested Fusions

For the IMPReSS Context Manager, the result of a Fusion might become a virtual sensor, which in
turn may be fed into another Fusion, as shown by Figure 24. Tracking such nested fusions is a

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 24 of 27 Submission date: 31/08/2015

challenge, which required the development of a recursive function, presented in Appendix B. Using

that function, no matter how many nested fusions are used, they all will be tracked back reaching
the source sensors.

Figure 24 – Tracking and Counting Context Execution – Nested Fusions
(S1*29:F1*1,S2*21:F1*1,S3*22:F2*1,S4*23:F3*1,S5*24:F3*1;F1*1
:F2*1,F2*1:F4*1,F3*1:F4*1,F4*1:R1*2;R1*2:A1*27,R1*2:A2*28;)

3.7 Activity Entity (Schedule)

Typically some activities are pre-scheduled such are classes in a university. In those cases,

whenever a class is about to start, some preparations should be made in the previous minutes, such
as opening the door, switching on lights and turning on air conditioners or heaters. Activities can be

configured in the schedule via the Schedule interface of the Context Web UI, as shown by Figure 25.

Figure 25 – Context Web UI – Schedule

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 25 of 27 Submission date: 31/08/2015

Whenever a scheduled activity is executed, the execution context is logged in the local database,

which is available for query and visualization, as shown by Figure 26.

Figure 26 – Context Web UI – Schedule Log

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 26 of 27 Submission date: 31/08/2015

4. Conclusion

The IMPReSS System Development Platform (SDP) needs to be context aware in order to provide an
efficient use of energy in buildings, in such a way to adapt its operations to the current context

conditions without explicit user intervention. The implementation of the IMPReSS Context Manager
was presented in Deliverable D6.4, which exports a REST API for allowing the development of

different client applications.

This deliverable presents the implementation of the IMPReSS Context Web UI, which is a Context
Modelling Tool that allows users to perform CRUD (Create, Read, Update, Delete) operations on

seven entities that may be used to develop a typical context-aware building automation application:
Resource (sensors/actuators), Place (rooms, floors), Fusion (data aggregation), Rule (decisions),

Action (commands to actuators), Activity (scheduled activities), and Context (combination of
Resource, Place, Fusion, Rule, and Action). The Context Web UI is based on AngularJS, an open-

source web application framework developed by Google for simple-page Web applications.

This deliverable is an important output of Task 6.4 (Context Model & Rule Authoring Tool), which
complements that development of the Context Manager, which is in turn an output of Task 6.3. The

Context Web UI aims at exploring and demonstrating the features provided by the Context Manager,
as well as making it easier for developers or integrators to configure energy-efficiency context

management applications. The next steps are testing and debugging the Context Web UI for making

it suitable to be used in the development of energy efficiency management applications. Also, it will
be used for demonstration purposes.

IMPReSS D6.5 Implementation of Context Modelling Tool and Templates

Document version: 1.0 Page 27 of 27 Submission date: 31/08/2015

References

(Kamienski et. al 2015) Kamienski, C., Borelli, F., Oliveira, G., Moretti, W., Pinheiro, I., (2015),
Implementation of Context Reasoning Engine, IMPReSS Consortium,

Deliverable D6.4, March 2015.

(Kamienski et. al 2014a) Kamienski, C., Borelli, F., Oliveira, G., Moretti, W., Pinheiro, I., Belati,

E. (2014), SDP Initial Architecture Report, IMPReSS Consortium,

Deliverable D2.2.1, February 2014.

(Kamienski et. al 2014b) Kamienski, C., Borelli, F., Oliveira, G., Moretti, W., Pinheiro, I., Belati,

E. (2014), Context Management Framework Architecture and Design of
Context Templates, IMPReSS Consortium, Deliverable D6.4, November

2014.

