

(FP7 614100)

D3.4 Network Management

29.10. 2015

Published by the IMPReSS Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme and
the Conselho Nacional de Desenvolvimento Científico e Tecnológico

Objective ICT-2013.10.2 EU-Brazil research and development Cooperation

http://www.cnpq.br/index.htm

IMPReSS D3.4 Network Management

Document version: 1.0 Page 2 of 31 Submission date: 29.10.2015

Document control page

Document file: IMPRESS D3.4_for_internal_review_ISMB_prefinal.docx

Document version: 2

Document owner: Matti Eteläperä (VTT)

Work package: WP3 Resource Abstraction and IoT Communication Infrastructure

Task: T3.4 Network Management

Deliverable type: P

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Matti Eteläperä (VTT) 07/08/2015 First draft

0.2 Matti Eteläperä (VTT) 23/10/2015 ToC edits and first inputs

0.3 Jussi Kiljander (VTT) 23/10/2015 Executive summary and conclusions

0.4 Tuomo Mattila (VTT) 25/10/2015 IoT gateway software management

1.0 Matti Eteläperä (VTT) 29/10/2015 Final version after internal review

Internal review history:

Reviewed by Date Summary of comments

Davide Conzon 28/10/2015 Approved with minor comments

Peeter Kool 28/10/2015 Approved with minor comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the IMPReSS Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular

purpose. The Members of the IMPReSS Consortium shall not be held liable for errors contained herein

or direct, indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of

the information contained therein.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 3 of 31 Submission date: 29.10.2015

Index:

1. Executive summary ... 4

2. Introduction .. 5

2.1 Purpose, context and scope of this deliverable .. 5
2.2 IoT gateway life-cycle .. 6

3. IoT gateway deployment management ... 8

3.1 Introduction .. 8
3.2 Architecture components .. 8

3.2.1 MQTT Broker ... 9
3.2.2 Gateway device and software .. 9
3.2.3 Proximity Manager .. 10
3.2.4 System Knowledge Base .. 11
3.2.4.1 SKB REST interface ... 11
3.2.4.2 SKB UI web service ... 11

3.3 Select sequence diagrams ... 18
3.4 IMPReSS test case implementation ... 20

3.4.1 Bluetooth Low Energy (BLE) sensor-tags .. 21

4. IoT gateway software management .. 23

4.1 IoT gateway software management overview ... 23
4.2 Host-level version controller .. 24
4.3 Container-level version controller ... 24
4.4 Security considerations ... 27

5. Results and discussion .. 28

6. References .. 29

Appendix A ... 30

IMPReSS D3.4 Network Management

Document version: 1.0 Page 4 of 31 Submission date: 29.10.2015

1. Executive summary

This deliverable describes a novel network management infrastructure for the Internet of Things,
which has been developed in the T3.4 - Network Management. The key features of the IoT network

management infrastructure are the following:

1. Remote management of IoT gateway software.

2. Low-effort deployment of IoT sensors and actuators.

3. Zero-effort management of IoT device context during runtime.

The goal of the remote software management is to decrease the costs related to management of

IoT gateway software both by 1) making it possible to manage the software remotely so that there
is no need for maintenance personnel to visit the premises and by 2) making it as easy as possible

to package the various libraries and modules into a single software package. The remote software

management infrastructure for IoT gateways is implemented on top of Docker virtualization tool.

The goal in the low-effort deployment of IoT devices and runtime management of IoT device

context is to decrease the costs related to IoT sensor and actuator deployment by automating the
processes related to context creation and maintenance. That is, the aim is to generate the

associations between IoT Resources (i.e., sensors and actuators) and IoT Entities (i.e., object of

interest that are monitored and controlled by the IoT Resources) automatically. In particular, the
goal has been to create automatically these associations the room level. To this end, we assigned

IoT gateways to each room in the IoT system that we want to monitor and equip the other IoT
Entities with active tags, which advertise their unique ID over the air. The key idea is to use signal

strength information of sensor, actuator and active communication in order to associate these
devices into certain rooms and IoT Entities.

The approach is suitable for any wireless communication technology. In the proof-of-concept (PoC)

implementation, we utilized Bluetooth Low Energy (BLE) radio. With BLE it was possible to achieve
automatic association of IoT Resource and IoT Entities on the room level in most cases. However,

the variance in the signal strength was also quite high so problems may occur if two IoT Room GWs
are located very close to each other and separated only by thin wall.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 5 of 31 Submission date: 29.10.2015

2. Introduction

This document describes the various network management related technologies developed during

IMPReSS project. It is a stand-alone document describing the key components of each technology

and also provides links to the source codes.

2.1 Purpose, context and scope of this deliverable

The goal of the network management (Gonçalves et al 2012) in the traditional Internet is to
discover, monitor and manage Internet devices such as routers, switches and servers. Simple

Network Management Protocol (SNMP) (Case et al 1990) is the de-facto protocol for this purpose in
IP based networks.

In IoT the problems of the network management are similar to the traditional Internet. The main

difference is the devices that need to be managed. In IoT the challenge is to manage IoT
infrastructure devices such as IoT gateways, sensors and actuators that are core parts of the IoT

network. These are the most critical and important devices, because they need to be physically
located in the IoT system premises. This means that it will be expensive if it is not possible to

manage them remotely. MQTT (IBM & Eurotech 2010) and RESTful protocols such as Constrained

Application Protocol (CoAP) (Shelby et al 2013) and HTTP (Fielding et al 1999) are the de facto
protocols used in IoT and therefore it is natural to use the same protocols also for performing

network management activities. This is especially true for resource constrained devices as memory
can be saved by eliminating the need to support additional network management protocols such as

the SNMP for example.

IoT network management is a crucial bottleneck and problem in highly distributes IoT deployments.

The problem arises from the fact that the deployment and maintenance cost of systems rises in a

linear fashion with the number of connected devices. We aim to cut this network management
effort, by automating the most labour intensive tasks – namely the association between the physical

deployment of the IoT gateway and the services hosting system related information.

The IoT network management infrastructure developed in the T3.4 and described in this deliverable

consists of two independent solutions: Remote IoT gateway software management and zero-effort

IoT network context management. The zero-effort IoT network context management framework
provides means to create and manage the context (i.e., IoT Resources, IoT Entities and associations

between them) of IoT system. The framework is described in more detail in the chapter 3. To
illustrate how the framework works in practise, we apply it in a simulated scenario using the map of

the Federal University of Pernambuco (UFPE) campus. The IoT gateway software management
framework provides means for simple packaging and remote management of IoT gateway software.

It is described in more detail in the chapter 4.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 6 of 31 Submission date: 29.10.2015

Figure 1. IMPReSS architecture.

Figure 1 presents the original IMPReSS architecture and how network management block (green on

the right) is positioned. Network management work in IMPReSS is seen as an integration support

action for providing necessary tools for deploying large scale IoT systems rather than a functional
block in the architecture.

2.2 IoT gateway life-cycle

In Figure 2 we present the IoT gateway and system lifecycle used in producing tools described in
this deliverable. The green dot depicts the start point, leading to starting of the back-end web

services required by the gateway component and the process of deploying and running the IoT

gateways themselves.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 7 of 31 Submission date: 29.10.2015

Figure 2. IoT gateway lifecycle.

The back-end services presented in the figure involve both deployment related services as well as
run-time management related services, presented in sections 3 and 4 of this document. Also the

gateway specific cycle (drawn inside the box in Figure 2) involves steps which can be mapped to

either type of management. They are also presented in more detail in the following sections.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 8 of 31 Submission date: 29.10.2015

3. IoT gateway deployment management

3.1 Introduction

In this section, we present a system for automatically associating IoT devices to a back-end system

for both deployment and run-time management.

The system is designed to work particularly well in IoT deployment with multiple gateway devices

connected to static or moving wireless sensor or tag devices. Agnostic to the radio interface used,

the sensor-tags can be automatically associated to the nearby gateways, or even positioned via
sensor strength triangulation. To summarize, the system has two key functionalities to aid IoT

gateway and system deployment:

1. Zero effort deployment of IoT gateway devices

2. Automatic association of sensor-tags to gateways

These two functionalities result in an automatic system for associating physical objects of interest,
gateway devices, sensor-tags (and measurement values) and static physical places to each other.

3.2 Architecture components

An overview of the IMPReSS deployment management architecture is presented in Figure 3.

Figure 3. Architecture overview.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 9 of 31 Submission date: 29.10.2015

In Table 1 the mapping of functional components to the physical architecture is presented.

Table 1. Mapping of functional blocks to physical architecture.

Component Deployed at Description

MQTT Broker Local network or Internet Has to be accessible from all

gateways

Location manager Local network or Internet Has to be accessible from all
gateways

User interface Browser based, connected

either to local network or
Internet.

Has to be accessible from all

gateways and MQTT broker

The general architecture created in IMPReSS is presented in more detail in the following subsections.

3.2.1 MQTT Broker

MQTT broker is the main communication medium in the system. The star network formed around

the broker allows clients to communicate with each other by publishing and subscribing to topics.

Mosquitto MQTT broker version 1.4 was used in this setup. The list of the opened ports is presented

in Table 2. Along the default 1883 port, the broker topics can be accessed using WebSockets. This

feature is needed for browser-based interfacing.

Table 2. MQTT broker ports in the IMPReSS scenario.

Protocol port

MQTT 1883

MQTT over WebSockets 8083

3.2.2 Gateway device and software

As gateway devices we used RaspberryPi (RPI) 2 single board computers (Figure 4) connected to a
local network via Ethernet. The RPIs are equipped with radio interfaces to receive data from wireless

sensor-tags. Our approach does not limit the type of radio interface used in the tags, it can be for

example WIFI, Bluetooth, Ultra-wideband (UWB) or Z-Wave.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 10 of 31 Submission date: 29.10.2015

Figure 4. Raspberry Pi 2 gateway and Iomega BLE dongle.

Table 2 presents MQTT operations performed by the RPI, after receiving information from tags. The
gateways also send a keep-alive message every 10 seconds. This to notify the system that the

gateway is operational even if there is no tag signal received.

PUBLISH to topic Payload JSON Note

/gateways/<GW_ID>/tags/<TAG_ID> {gateway_id: GW_ID, tag_id:
TAG_ID, RSSI: rssi,
ADV_DATA : advData}

/gateways/<GW_ID> {gateway_id: MAC_ID} Keep-alive sent every
10 seconds

3.2.3 Proximity Manager

Proximity Manager (PM) is responsible for associating a sensor tag to the closest gateway device

based on the received signal strength. The gateway devices send to the proximity manager all RSSI
signal strength values. PM calculates the signal strength received by each of the sensor devices for

each gateway device and averages them in a time window of a predefined length. In the tests a
window length of 10 to 30 seconds was used.

SUBSCRIBE to topic Payload Note

/gateways/<GW_ID>/tags/<TAG_ID> {gateway_id: GW_ID, tag_id:
TAG_ID, RSSI: rssi,
ADV_DATA : advData}

Read RSSI value and
TAG_ID

PUBLISH to topic Payload Note

/associations/<TAG_ID> {gateway_id : GW_ID, tag :
TAG_ID, RSSI: rssi,
ADV_DATA: advData}

Generates

IMPReSS D3.4 Network Management

Document version: 1.0 Page 11 of 31 Submission date: 29.10.2015

3.2.4 System Knowledge Base

System Knowledge Base (SKB) provides a RESTful interface for accessing information in a request-
response manner. SKB also includes a template driven engine for creating a web service for

monitoring and managing the IoT deployment.

3.2.4.1 SKB REST interface

SKB REST interface resources are described in Table 3. A different base URI is given to each system

deployment and collections for places, objects, tags and gateways exist.

Table 3. Back-end REST interface.

Resource GET

http://<base_uri> Returns links to subcollection in JSON format.

http://<base_uri>/places Return the places in the system. E.g.
[{place_Id : 1342342}, …]

http://<base_uri>/places/<place_id> Returns representation of the room and links to the
resources. E.g.
{id : 1342342, name : E355, type : room, links :
/objects }

http://<base_uri>/objects/ Returns a list of objects in the whole system. E.g.
{links : [{link : /<object_id> }, { link :
/<object_id_2> }, …]}

http://<base_uri>/objects/<object_id> {id : 1342342, name : tempr sensor, type : sensor,
links : /attributes }

http://<base_uri>/tags {attributes : [{ vlink : /temperature, unit :
“Celsius”}, {link : /humidity, unit : “%”}, …]}

http://<base_uri>/tags/<tag_id> Return latest value in format {value : “22.5”}

http://<base_uri>/gateways Return the places in the system. E.g.
[{gateway_Id : 1342342}, …]

http://<base_uri>/gateways/<gateway
_id>

Returns representation of the gateways and links
resources. E.g.
{id : 1342342, name : E355, type : gateway, links :
/objects }

In Appendix A an example of a HTTP GET to a gateway collection URI is presented.

3.2.4.2 SKB UI web service

SKB UI includes the following sub-pages, or views:

General view (REST)

 Shows the amount of tags, gateways, places and objects registered in the system.

 See Figure 5.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 12 of 31 Submission date: 29.10.2015

Figure 5. UI general view.

Map view (REST + MQTT)

 Tool for creating new places on the map

o User specifies a central point of a room

 Tool for placing new gateways on map by drag and drop

o Automatically associates gateways to new places if moved

 Tool for linking map/floorplan to geographical coordinates

 Automatically visualizes the association between sensor-tags and closest gateways using a

force-driven layout

o Shows RSSI strengths of the associations

 Automatically shows objects linked to gateways

o Clicking the object node opens Object view

In Figure 6 the map view UI is presented. The pin circles are gateways positioned inside rooms
(E384 etc.) in a floorplan. In the lower section of the figure a tag (white circle) is associated to the

gateway names E366. “Jussi” is an object associated to the tag and the label is thus shown in the

figure. The user can move gateways to new position to match the actual deployment. New, not
associated gateways appear in the map view at a fixed location and are easy to associate to a place

in the floorplan.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 13 of 31 Submission date: 29.10.2015

Figure 6. Map view.

Collection views

 Tags collection view (REST)

o Information shown: ID, description, last seen, associated gateways and objects

o See Figure 7.

Figure 7. Tags collection view.

 Gateways collection view (REST)

o Information shown: ID, description, last seen, associated place

o See Figure 8.

Figure 8. Gateways collection view.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 14 of 31 Submission date: 29.10.2015

 Objects collection view (REST)

o User can create a new object

o See Figure 9.

Figure 9. Object collection view.

 Places collection view (REST)

o Information shown: ID, description, type, location, associated gateway

o User can create a new place

o See Figure 10.

Figure 10. Places collection view.

Individual views

 Object resource view (REST)

IMPReSS D3.4 Network Management

Document version: 1.0 Page 15 of 31 Submission date: 29.10.2015

o Shows associations between gateways, tags and objects

o Shows the historical graph of the previous sensor attributes

o See Figure 11.

 Figure 11. Object resource view.

 Tag resource view (REST)

o Shows associations between gateways, tags and objects

o Shows the historical graph of the previous sensor attributes

o See Figure 12.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 16 of 31 Submission date: 29.10.2015

Figure 12. Tag resource view.

 Gateway resource view (REST)

o Edit individual gateway attributes

o See Figure 13.

Figure 13. Gateway resource view.

 Place resource view (REST)

o See Figure 14.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 17 of 31 Submission date: 29.10.2015

Figure 14. Place resource view.

Map view MQTT topics

The following tables describe the MQTT subscribe and publish interface used by the map view.

Map view includes setup modes for new floorplans, or “maps”. The user can calibrate the x-y

coordinates used by the UI to real latitudes and longitudes by defining two points on the map and
inputting their respective geographical coordinates. This information is published to the MQTT broker

with a “retain” flag so that the browser can receive the latitude and longitude values after refreshing

the page. The x-y positions of gateway nodes are also published with the retain flag set.

Table 4. Map view MQTT publish topics.

PUBLISH to topics Retain flag Payload JSON Note

/latlons/<MAP_URN>

1 {map_uri: MAP_URI,
latlons: {lat_1:
latlon_1.lat, lon_1:
latlon_1.lon, lat_2 : lat,
lon_2 : lon}, xys : { x_1
: xys.x, y_1: xys.y, x_2
: x, y_2 : y }

Maps d3.js xy-
coordinates to
geographical
coordinates to
each map used.

/pos_map/<GW_ID> 1 {gateway_id: MAC_ID,
coordinates:[LAT,
LON]}

Loads saves
gateway
geographical
positions.

Table 5. Map view MQTT subscribe topics.

SUBSCRIBE to topic Payload JSON Note

/gateways/<GW_ID> {gateway_id: MAC_ID} Keep-alive

/associations/<TAG_ID> {gateway_id : GW_ID, tag :
TAG_ID, RSSI: rssi, ADV_DATA:
advData}

Gateway <-> tag
association

/pos_map/<GW_ID> {gateway_id: MAC_ID,
coordinates:[LAT, LON]}

Loads gateway
positions.

/latlons/<MAP_URN>

{map_uri: MAP_URI, latlons:
{lat_1: latlon_1.lat, lon_1:
latlon_1.lon, lat_2 : lat, lon_2 :
lon}, xys : { x_1 : xys.x, y_1:
xys.y, x_2 : x, y_2 : y }

Maps d3.js xy-
coordinates to
geographical
coordinates to each
map used.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 18 of 31 Submission date: 29.10.2015

3.3 Select sequence diagrams

In this section, we present some of the key communication patterns involved in the IMPReSS zero-
effort deployment architecture.

Figure 15 shows how the Proximity Manager receives signal strength values from each nearby tag
and determines the closest tag based on this information. The calculation is an average of time t

seconds (30s by default) and the evaluation is performed for each received signal strength message.

The strongest signal value is translated into an association message, linking a tag to the gateway.
This message is used by the UI and System Knowledge Base components.

All communication after the Gateway go through the MQTT broker, but it is not drawn in the
sequence diagram for simplicity’s sake.

Figure 15. Proximity algorithm sequence diagram (MQTT omitted).

 Figure 16 presents the information flow from the sensor-tag to the SKB. The message sent by the
tag is presented in a bit more detail. In this example the tag sends TAG_ID and temperature values.

The Gateway forwards this message to the MQTT broker to a topic matching the gateway and tag,

to which SKB is subscribed via a wildcard. After SKB gets notification of the message it updates a
number of RESTful resources and thus makes the tag data available.

Figure 16. Information flow from sensor-tag to System Knowledge Base.

Figure 17. Object association Tag to System Knowledge Base.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 19 of 31 Submission date: 29.10.2015

Figure 18 shows the different interactions among the Web UI Map view and the other components.
Both MQTT and REST API are used in order to both visualize events in real time and data stored in

the SKB. The figure highlights the complexity and the distributed nature of the system.

Figure 18. Web UI data access for map view.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 20 of 31 Submission date: 29.10.2015

3.4 IMPReSS test case implementation

The architecture described in the previous sections is a generic and can be used in various
scenarios. In IMPReSS, we tested the approach by mapping the Federal University of Pernambuco

(UFPE). Although the software was originally designed to be used in the Opera House scenario, we
decided to try it in a larger environment.

Figure 19. Map view with gateways positioned on the UFPE map.

Figure 19 shows the map of UFPE campus, with three simulated gateways (pink nodes) and one

sensor-tag (white node) associated to object “Jussi”. In this deployment, the gateway devices were
not actually present at the UFPE premises, but this was not needed for demonstrating the

deployment system.

The simulation showed that it was easy to adapt the IMPReSS system to use the UFPE campus map.

In the early phase of the work the system was also simulated in the IMPReSS Opera House scenario,

and the only change required was to use a specific vector graphics map instead of a floorplan.
Gateways appear on the map approximately 20 seconds after they are plugged in. The delay is

because of Rapsberry Pi microcomputers booting.

The following deployment steps were taken:

1. Open web UI object view

a. Create some objects of interest to be monitored by the system

i. Insert name, type, description

2. Open web browser at the Map View

a. Press “A” key to enable “add place” mode.

i. Click on map, input place name and description

ii. Repeat for as many places needed

b. Press “L” key to enable mapping of map pixels to geographical coordinates

IMPReSS D3.4 Network Management

Document version: 1.0 Page 21 of 31 Submission date: 29.10.2015

i. Click on a known spot #1 and input latitude and longitude values

ii. Click on a known spot #2 and input latitude and longitude values

iii. Places and gateways now get real geographical coordinates in the system

3. Switch the gateway devices on

a. Unassociated gateways appear on the map after 20 seconds (booting time)

b. Select a gateway (it turns red) by clicking it

c. Click on the map and the gateway is

i. Moved to the new position

ii. Automatically associated to the closest place coordinate

4. Switch on a sensor-tag

a. Appears immediately on the map view as a white node

b. Linked to the closest gateway

c. Open tag view and associate an object to the tag

5. Move tag to another position

a. Sensor values are automatically associated to the new place in System Knowledge

Base.

3.4.1 Bluetooth Low Energy (BLE) sensor-tags

Any radio technology from which the signal strength can be obtained could be used in the system,

but we chose VTT’s TinyNode BLE in this setup. Raspberry Pi gateway devices were equipped with
an Iogear USB dongle and a matching driver for receiving the BLE signal and publishing to the MQTT

broker with a suitable payload.

The sensor-tags are based on Nordic Semiconductror N51422 chips and are programmable. The BLE
sensor-tags used in the setup send an advertisement beacon every 1 second. The transmission rate

is configurable and the advertisement message can include various sensor value readings,
depending on the hardware used. In our proof-of-concept we transmitted a temperature value

encoded in the advertisement message. The sensor-tag used is seen in Figure 20.

Figure 20. Coin sized VTT TinyNode BLE sensor-tag.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 22 of 31 Submission date: 29.10.2015

In Figure 21 the relation between sensor-tag battery life with a 220mAh CR2032 battery compared
to advertisement message is shown. The data points are for 1, 10, 30, 60, 120, 240, 480 and 600

second intervals. One can see that the battery life starts degrading rapidly for transmission intervals

under 60 seconds. Our setup used an interval of 1 second for easier debugging, leading to a limited
battery life of approximately 3 months.

Figure 21. BLE sensor-tag battery life vs. transmission interval.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 23 of 31 Submission date: 29.10.2015

4. IoT gateway software management

4.1 IoT gateway software management overview

To provide capabilities for maintaining and upgrading the software of the IoT gateways, a version
control system must be in place. To facilitate this, a software container system (also known as

operating-system-level virtualization) is used.

There are a number of benefits to using a software container system. For a reasonably small system
resource overhead cost it grants a degree of isolation to the containers. This allows for somewhat

effortless switching between different versions for each containerized software component while
guaranteeing a desired set of runtime libraries and filesystem state inside each container. Thus, the

version management system can safely roll back software updates if necessary or have software

components with conflicting runtime library dependencies.

In this setup, we use Docker as the software container implementation, running on the Raspbian

distribution of GNU/Linux. It provides virtualization capabilities by utilizing facilities of the Linux
kernel, such as cgroups and namespaces. It is controlled via a high-level API which the version

controller software uses.

Figure 22. IoT gateway software management architecture.

The version control system consists of, if not counting the OS services and Docker, two separate
components (see Figure 22): the host-level controller and the container-level controller. The rationale

for this division stems from the fact that the version controller itself may need updating and since
any update runs the risk of something going wrong with the update, this risk needs to be mitigated

by having a separate component that is as simple as possible and preferably never updated. Thus, if

an update of the container-level version controller fails or crashes due to a bug, the host-level
controller acts as a rescue system.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 24 of 31 Submission date: 29.10.2015

4.2 Host-level version controller

Since this setup runs on a variant of the well-established GNU/Linux distribution Debian, we are able
to make use of its native packaging system for installing the host-level version controller, which

grants it additional robustness by making sure it and all its software dependencies are properly
installed. The host-level software version controller itself is a rather simple, periodically run script-like

application whose most important function is to perform an externally defined set of tasks, one of

which is checking that the container-level version controller is working normally.

In practice, this is done utilizing a software called Ansible in so-called “pull mode”. Ansible is a

configuration management software platform, which can be used to perform a very large variety of
tasks on a remote system. In our case, Ansible is installed as a dependency for the host-level

software version controller. Periodically, the version controller retrieves a set of tasks (called a
playbook) from the cloud. These tasks can include managing package installations on the IoT

gateway host OS, modifying configuration files, starting and stopping services, and so on. Ansible

has a number of plugins, which enable running these tasks in a robust manner. The basic tasks are
ensuring that the desired version of Docker is installed and running and that the desired version of

the container-level version controller is installed and running and not crashed or frozen. The latter
check is performed using a subset of the REST API described later in this chapter.

4.3 Container-level version controller

The other component of the version controller is the container-level version controller, which
manages the actual IoT gateway software components. It uses the Docker API to query Docker for

information regarding running containers, and to control their starting, stopping, restarting and

removal according to concurrent update information it receives from the cloud.

The update process is visualized in Figure 23. To receive new update information, the container-level

version controller subscribes to an MQTT topic on a broker in the cloud. Thus, it receives new update
information, as soon as it is published on the relevant MQTT topic. The update information,

published in JSON format, contains Docker container configuration parameters, for each component

container that is supposed to be running after the update. The data content of the update
information message is described in Table 6.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 25 of 31 Submission date: 29.10.2015

Figure 23. IoT gateway update process sequence diagram.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 26 of 31 Submission date: 29.10.2015

Table 6. Payload parameters.

Datum name Example data Description

version 0.12 Software component version

status production e.g. “production”, “testing”

repository registry.impress.eu/iotgatewa

y/gateway_db

Docker image repository name

tag 0.12 Docker image repository tag

virtual_size_KiB 209408 Image disk space requirement

image_id 3e742de7ced0 Numerical id of the Docker

image

cmd /impress/startdb.sh Command (and arguments) to

run inside the container

publish_ports [“3306/tcp”] Array of port mappings from

the container to the host

lvc_api_version 0.10 Version of API used by the

version controller to query

and control the software

component

lvc_api_port 8086 Port used for version control

API communication

containername gateway_db Locally unique name for the

container used by Docker

container_labels [“impress”, “iot_gateway”] Additional identifying labels

used by Docker

volumes [“/var/lib/impress/db:/var/lib/

mysql”]

Array of host paths to be

mounted into the container

volumes_from [] Array of paths from other

containers to be mounted into

the container

links [] Array of local containers by

name, to which this container

should have private network

access

Upon receiving new version information, the version controller determines which containers, if any,

should be updated, created or removed. Any containers, identified by name, whose configuration

has changed from that which is running, need to be updated, as well as any containers linking to or
mounting volumes from them. Any container configurations not specified in the version information

should be stopped.

The container-level version controller also utilizes a REST API to communicate with the software

components in each container. This API (described in Table 7) is used to query and control the
running of the software component residing in a container. Some containers, database containers for

example, may require a controlled shutdown to ensure data integrity for any persistent data. When

updating a container, the version controller will tell the software component to run its self-test-suite
to check, for example, that it is able to access any network or device resources it requires. If the

software component reports a problem or fails to perform the tests, the version controller will know
to report the error to the cloud and roll back the update if necessary.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 27 of 31 Submission date: 29.10.2015

Table 7. REST interface description.

Verb Resource

(/impress/lvc/v010/..)

Description

GET ../info General info

POST ../tests/selftest Initiate component self-test

GET ../tests/selftest Get self-test results from component

POST ../status/quit Tell component to exit gracefully

4.4 Security considerations

The “wild card” nature of the setup described above raises a number of questions regarding security
that need to be considered with due seriousness.

First of all, all communication must be secured cryptographically with both ends' identities verified.

The standard way of accomplishing this is to use Transport Layer Security (TLS) protocol, which
provides endpoint-authenticated, encypted, integrity-checked communications between the IoT

gateway and any cloud service. In our setup we use pre-shared server and client certificates for
authentication. An important detail is to make sure that sufficiently large key lengths are used, both

in certificate signatures and communication encryption.

Secondly, one trade-off for having the host-level component of the management system as simple as
possible, is that it ultimately runs arbitrary commands with super-user privileges on the host system.

To counter malicious exploitation of this functionality, any Ansible playbooks or other scripts must be
verified by the version controller to originate from a trusted source. To accomplish this, the host-

level version controller uses a pre-installed GnuPG public key to verify the playbooks, in addition to
verifying the communication with the cloud services. If keys of finite validity duration are used,

however, the host-level version controller package may need to be updated from time to time to

install renewed keys.

Thirdly, the authenticity of the Docker container configuration information, which the container-level

version controller receives from an MQTT topic it subscribes to, must be ensured. Here again, the
communication security provided by TLS is not enough. While MQTT traffic is easily secured by TLS,

steps must be taken to make sure no unauthorized party can publish data to the topic from which

the version controller receives the new version information. This can be accomplished by configuring
the broker with access control lists that restrict publishing to that topic to clients certified with either

a password or a TLS client certificate. In addition, the data payload itself may be signed with GnuPG,
similarly to what the host-level version controller requires of the Ansible playbooks it runs.

Finally, there are a number of smaller concerns. One such is the risk that the Docker daemon may
download a fake image. Measures to prevent this include using a private image registry, securing

communications with TLS, with the identity of the image registry verified, and providing hard-to-fake

identifying information about the images within the update information message. Another concern
worth considering is the communication security between Docker containers running inside the IoT

gateway. This should be a rather hypothetical concern since the containers are expected to reside
within a single computer and only communicate via virtual network interfaces, but special cases or

misconfiguration may compromise security.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 28 of 31 Submission date: 29.10.2015

5. Results and discussion

In this deliverable a novel IoT network management infrastructure was presented. This work has

been executed in the task 3.4 - Network Management. The IoT network management infrastructure

provides the system administrator with following features: 1) remote management of IoT gateway
software, 2) low-effort deployment of IoT sensors and actuators, and 3) zero-effort management of

IoT device context during runtime.

The IoT network management infrastructure consists of two individual frameworks: remote software

management and IoT network context management. The remote software management framework

is a Docker based solution that makes it possible to decrease the costs related to software
management of IoT gateways by 1) making it possible to manage the software remotely and by 2)

simplifying the process related to software packaging.

The IoT network context management framework provides means for low-effort deployment of IoT

devices and zero-effort runtime management of IoT device context. The framework makes it
possible to create and visualise IoT Entities and manage the associations between IoT Entities and

IoT Resource at a room level. There is a IoT gateway, called Room GW, located in each room (i.e.,

IoT Entity) that needs to be monitored. Other type of IoT Entities are equipped with radio interfaces
(BLE based active tags in this scenario, other radio technologies are also possible). When new IoT

Resources are deployed or when the context of the system changes (e.g. IoT Entities move from
one room to another) they system automatically associates the IoT Resources and IoT Entities with

the room and with each other (i.e., ambient temperature sensor located in a room is associated to

all the other objects located in the room). In practise, the associations are deduced from proximity
information calculated from signal strength data sent by the tags and the sensor/actuator devices.

By automating the processes related to context creation and maintenance, this framework makes it
possible to decrease the costs related to IoT deployment and maintenance.

In our experiments, the signal strength data obtained from the BLE communication was sufficient for
deducing the associations at the room level. However, there were some problems if two IoT Room

GWs were located very close each other and the wall between them as thin. Therefore, if more

accurate measurements or finer granularity level of association (i.e., associations within a room) are
required different radio technology should be investigated. For example, active tags utilizing Ultra-

wideband (UWB) radio (Reed 2005) would be good candidates for this purpose.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 29 of 31 Submission date: 29.10.2015

6. References

(Case et al1990) Case JD, Fedor M, Schoffstall ML & Davin J. (1990) Simple

Network Management Protocol (SNMP).

(Gonçalves et al 2012) Gonçalves P, Oliveira JL & Aguiar RL. (2012) A study of encoding

overhead in network management protocols. Intrnl.Journal of

Network Management - IJNM 22(6): 435.

(IBM & Eurotech 2010) IBM & Eurotech. (2010) MQTT V3.1 Protocol Specification. URI:

http://public.dhe.ibm.com/software/dw/webservices/ws-

mqtt/MQTT_V3.1_Protocol_Specific.pdf. 2014(9/3).

(Shelby et al 2013) Shelby Z, Hartke K & Bormann C. (2013) Constrained Application

Protocol (CoAP) draft-ietf-core-coap-18, RFC 7252. URI:

http://datatracker.ietf.org/doc/draft-ietf-core-coap/. 2014(4/5).

(Fielding et al 1999) Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L, Leach P &

Berners-Lee T. (1999) Hypertext Transfer Protocol -- HTTP/1.1,

RFC 2616, URI: https://www.ietf.org/rfc/rfc2616.txt.

2014(10/23).

(Reed 2005) Reed J. (2005) Introduction to Ultra Wideband Communication

Systems, an. Upper Saddle River, NJ, USA: Prentice Hall Press.

IMPReSS D3.4 Network Management

Document version: 1.0 Page 30 of 31 Submission date: 29.10.2015

Appendix A

REST API output example for HTTP GET to: <BASE_URI>/gateways:

[

 {

 "name": "Gateway-Farmacia",

 "links": [

 {

 "href": "gateways/b8:27:eb:cd:90:5b",

 "rel": "self",

 "title": "Gateways"

 },

 {

 "href": "places/Farmacia",

 "rel": "place",

 "title": "Places"

 }

],

 "lastSeen": "2015-06-25T15:42:05.443558",

 "_id": {

 "$oid": "554b0e1889756465f66c44db"

 },

 "type": null,

 "id": "b8:27:eb:cd:90:5b",

 "description": "add description"

 },

 {

 "name": "Gateway-Cecine",

 "links": [

 {

 "href": "gateways/b8:27:eb:69:1a:61",

 "rel": "self",

 "title": "Gateways"

 },

 {

 "href": "places/Cecine",

 "rel": "place",

 "title": "Places"

 }

],

 "lastSeen": "2015-06-25T15:42:04.323222",

 "_id": {

 "$oid": "554b0e1f89756465f66c44ec"

 },

 "type": null,

 "id": "b8:27:eb:69:1a:61",

 "description": "add description"

 },

 {

IMPReSS D3.4 Network Management

Document version: 1.0 Page 31 of 31 Submission date: 29.10.2015

 "name": "Gateway-Quimica",

 "links": [

 {

 "href": "gateways/b8:27:eb:32:58:29",

 "rel": "self",

 "title": "Gateways"

 },

 {

 "href": "places/Quimica",

 "rel": "place",

 "title": "Places"

 }

],

 "lastSeen": "2015-06-25T15:42:00.989635",

 "_id": {

 "$oid": "554b0e1d89756465f66c44e9"

 },

 "type": null,

 "id": "b8:27:eb:32:58:29",

 "description": "add description"

 },

 {

 "name": "Gateway-Quimica",

 "links": [

 {

 "href": "gateways/b8:27:eb:ae:4b:de",

 "rel": "self",

 "title": "Gateways"

 },

 {

 "href": "places/Quimica",

 "rel": "place",

 "title": "Places"

 }

],

 "lastSeen": "2015-06-25T15:42:00.330857",

 "_id": {

 "$oid": "554b0e1889756465f66c44da"

 },

 "type": null,

 "id": "b8:27:eb:ae:4b:de",

 "description": "add description"

 }

]

